"Variety's the very spice of life,
That gives it all its flavour."
COWPER: The Task.
A boy, recently home from school, wished to give his father an exhibition of his precocity. He pushed a large circular table into the corner of the room, as shown in the illustration, so that it touched both walls, and he then pointed to a spot of ink on the extreme edge.
"Here is a little puzzle for you, pater," said the youth. "That spot is exactly eight inches from one wall and nine inches from the other. Can you tell me the diameter of the table without measuring it?"
The boy was overheard to tell a friend, "It fairly beat the guv'nor;" but his father is known to have remarked to a City acquaintance that he solved the thing in his head in a minute. I often wonder which spoke the truth.
98.—ACADEMIC COURTESIES.In a certain mixed school, where a special feature was made of the inculcation of good manners, they had a curious rule on assembling every morning. There were twice as many girls as boys. Every girl made a bow to every other girl, to every boy, and to the teacher. Every boy made a bow to every other boy, to every girl, and to the teacher. In all there were nine hundred bows made in that model academy every morning. Now, can you say exactly how many boys there were in the school? If you are not very careful, you are likely to get a good deal out in your calculation.
99.—THE THIRTY-THREE PEARLS."A man I know," said Teddy Nicholson at a certain family party, "possesses a string of thirty-three pearls. The middle pearl is the largest and best of all, and the others are so selected and arranged that, starting from one end, each successive pearl is worth £100 more than the preceding one, right up to the big pearl. From the other end the pearls increase in value by £150 up to the large pearl. The whole string is worth £65,000. What is the value of that large pearl?"
"Pearls and other articles of clothing," said Uncle Walter, when the price of the precious gem had been discovered, "remind me of Adam and Eve. Authorities, you may not know, differ as to the number of apples that were eaten by Adam and Eve. It is the opinion of some that Eve 8 (ate) and Adam 2 (too), a total of 10 only. But certain mathematicians have figured it out differently, and hold that Eve 8 and Adam a total of 16. Yet the most recent investigators think the above figures entirely wrong, for if Eve 8 and Adam 8 2, the total must be 90."
"Well," said Harry, "it seems to me that if there were giants in those days, probably Eve 8 1 and Adam 8 2, which would give a total of 163.""I am not at all satisfied," said Maud. "It seems to me that if Eve 8 1 and Adam 8 1 2, they together consumed 893."
"I am sure you are all wrong," insisted Mr. Wilson, "for I consider that Eve 8 1 4 Adam, and Adam 8 1 2 4 Eve, so we get a total of 8,938."
"But, look here," broke in Herbert. "If Eve 8 1 4 Adam and Adam 8 1 2 4 2 oblige Eve, surely the total must have been 82,056!"
At this point Uncle Walter suggested that they might let the matter rest. He declared it to be clearly what mathematicians call an indeterminate problem.
100.—THE LABOURER'S PUZZLE.
Professor Rackbrane, during one of his rambles, chanced to come upon a man digging a deep hole.
"Good morning," he said. "How deep is that hole?"
"Guess," replied the labourer. "My height is exactly five feet ten inches."
"How much deeper are you going?" said the professor. "I am going twice as deep," was the answer, "and then my head will be twice as far below ground as it is now above ground."
Rackbrane now asks if you could tell how deep that hole would be when finished.101.—THE TRUSSES OF HAY.
Farmer Tompkins had five trusses of hay, which he told his man Hodge to weigh before delivering them to a customer. The stupid fellow weighed them two at a time in all possible ways, and informed his master that the weights in pounds were 110, 112, 113, 114, 115, 116, 117, 118, 120, and 121. Now, how was Farmer Tompkins to find out from these figures how much every one of the five trusses weighed singly? The reader may at first think that he ought to be told "which pair is which pair," or something of that sort, but it is quite unnecessary. Can you give the five correct weights?
102.—MR. GUBBINS IN A FOG.Mr. Gubbins, a diligent man of business, was much inconvenienced by a London fog. The electric light happened to be out of order and he had to manage as best he could with two candles. His clerk assured him that though both were of the same length one candle would burn for four hours and the other for five hours. After he had been working some time he put the candles out as the fog had lifted, and he then noticed that what remained of one candle was exactly four times the length of what was left of the other.
When he got home that night Mr. Gubbins, who liked a good puzzle, said to himself, "Of course it is possible to work out just how long those two candles were burning to-day. I'll have a shot at it." But he soon found himself in a worse fog than the atmospheric one. Could you have assisted him in his dilemma? How long were the candles burning?
103.—PAINTING THE LAMP-POSTS.Tim Murphy and Pat Donovan were engaged by the local authorities to paint the lampposts in a certain street. Tim, who was an early riser, arrived first on the job, and had painted three on the south side when Pat turned up and pointed out that Tim's contract was for the north side. So Tim started afresh on the north side and Pat continued on the south. When Pat had finished his side he went across the street and painted six posts for Tim, and then the job was finished. As there was an equal number of lamp-posts on each side of the street, the simple question is: Which man painted the more lamp-posts, and just how many more?
104.—CATCHING THE THIEF."Now, constable," said the defendant's counsel in cross-examination," you say that the prisoner was exactly twenty-seven steps ahead of you when you started to run after him?"
"Yes, sir."
"And you swear that he takes eight steps to your five?"
"That is so."
"Then I ask you, constable, as an intelligent man, to explain how you ever caught him, if that is the case?"
"Well, you see, I have got a longer stride. In fact, two of my steps are equal in length to five of the prisoner's. If you work it out, you will find that the number of steps I required would bring me exactly to the spot where I captured him."
Here the foreman of the jury asked for a few minutes to figure out the number of steps the constable must have taken. Can you also say how many steps the officer needed to catch the thief?
105.—THE PARISH COUNCIL ELECTION.Here is an easy problem for the novice. At the last election of the parish council of Tittlebury-in-the-Marsh there were twenty-three candidates for nine seats. Each voter was qualified to vote for nine of these candidates or for any less number. One of the electors wants to know in just how many different ways it was possible for him to vote.
106.—THE MUDDLETOWN ELECTION.At the last Parliamentary election at Muddletown 5,473 votes were polled. The Liberal was elected by a majority of 18 over the Conservative, by 146 over the Independent, and by 575 over the Socialist. Can you give a simple rule for figuring out how many votes were polled for each candidate?
107.—THE SUFFRAGISTS' MEETING.At a recent secret meeting of Suffragists a serious difference of opinion arose. This led to a split, and a certain number left the meeting. "I had half a mind to go myself," said the chair-woman, "and if I had done so, two-thirds of us would have retired." "True," said another member; "but if I had persuaded my friends Mrs. Wild and Christine Armstrong to remain we should only have lost half our number." Can you tell how many were present at the meeting at the start?
108.—THE LEAP-YEAR LADIES.Last leap-year ladies lost no time in exercising the privilege of making proposals of marriage. If the figures that reached me from an occult source are correct, the following represents the state of affairs in this country.
A number of women proposed once each, of whom one-eighth were widows. In consequence, a number of men were to be married of whom one-eleventh were widowers. Of the proposals made to widowers, one-fifth were declined. All the widows were accepted. Thirty-five forty-fourths of the widows married bachelors. One thousand two hundred and twenty-one spinsters were declined by bachelors. The number of spinsters accepted by bachelors was seven times the number of widows accepted by bachelors. Those are all the particulars that I was able to obtain. Now, how many women proposed?
109.—THE GREAT SCRAMBLE.After dinner, the five boys of a household happened to find a parcel of sugar-plums. It was quite unexpected loot, and an exciting scramble ensued, the full details of which I will recount with accuracy, as it forms an interesting puzzle.
You see, Andrew managed to get possession of just two-thirds of the parcel of sugarplums. Bob at once grabbed three-eighths of these, and Charlie managed to seize threetenths also. Then young David dashed upon the scene, and captured all that Andrew had left, except one-seventh, which Edgar artfully secured for himself by a cunning trick. Now the fun began in real earnest, for Andrew and Charlie jointly set upon Bob, who stumbled against the fender and dropped half of all that he had, which were equally picked up by David and Edgar, who had crawled under a table and were waiting. Next, Bob sprang on Charlie from a chair, and upset all the latter's collection on to the floor. Of this prize Andrew got just a quarter, Bob gathered up one-third, David got two-sevenths, while Charlie and Edgar divided equally what was left of that stock.
They were just thinking the fray was over when David suddenly struck out in two directions at once, upsetting three-quarters of what Bob and Andrew had last acquired. The two latter, with the greatest difficulty, recovered five-eighths of it in equal shares, but the three others each carried off one-fifth of the same. Every sugar-plum was now accounted for, and they called a truce, and divided equally amongst them the remainder of the parcel. What is the smallest number of sugar-plums there could have been at the start, and what proportion did each boy obtain?
110.—THE ABBOT'S PUZZLE.The first English puzzlist whose name has come down to us was a Yorkshireman—no other than Alcuin, Abbot of Canterbury (A.D. 735-804). Here is a little puzzle from his works, which is at least interesting on account of its antiquity. "If 100 bushels of corn were distributed among 100 people in such a manner that each man received three bushels, each woman two, and each child half a bushel, how many men, women, and children were there?"
Now, there are six different correct answers, if we exclude a case where there would be no women. But let us say that there were just five times as many women as men, then what is the correct solution?
111.—REAPING THE CORN.A farmer had a square cornfield. The corn was all ripe for reaping, and, as he was short of men, it was arranged that he and his son should share the work between them. The farmer first cut one rod wide all round the square, thus leaving a smaller square of standing corn in the middle of the field. "Now," he said to his son, "I have cut my half of the field, and you can do your share." The son was not quite satisfied as to the proposed division of labour, and as the village schoolmaster happened to be passing, he appealed to that person to decide the matter. He found the farmer was quite correct, provided there was no dispute as to the size of the field, and on this point they were agreed. Can you tell the area of the field, as that ingenious schoolmaster succeeded in doing?
112.—A PUZZLING LEGACY.A man left a hundred acres of land to be divided among his three sons—Alfred, Benjamin, and Charles—in the proportion of one-third, one-fourth, and one-fifth respectively. But Charles died. How was the land to be divided fairly between Alfred and Benjamin?
113.—THE TORN NUMBER.I had the other day in my possession a label bearing the number 3 0 2 5 in large figures. This got accidentally torn in half, so that 3 0 was on one piece and 2 5 on the other, as shown on the illustration. On looking at these pieces I began to make a calculation, scarcely conscious of what I was doing, when I discovered this little peculiarity. If we add the 3 and the 2 5 together and square the sum we get as the result the complete original number on the label! Thus, 30 added to 25 is 55, and 55 multiplied by 55 is 3025. Curious, is it not? Now, the puzzle is to find another number, composed of four figures, all different, which may be divided in the middle and produce the same result.
114.—CURIOUS NUMBERS.The number 48 has this peculiarity, that if you add 1 to it the result is a square number (49, the square of 7), and if you add 1 to its half, you also get a square number (25, the square of 5). Now, there is no limit to the numbers that have this peculiarity, and it is an interesting puzzle to find three more of them—the smallest possible numbers. What are they?
115.—A PRINTER'S ERROR.In a certain article a printer had to set up the figures 54 × 23, which, of course, means that the fourth power of 5 (625) is to be multiplied by the cube of 2 (8), the product of which is 5,000. But he printed 54 × 23 as 5 4 2 3, which is not correct. Can you place four digits in the manner shown, so that it will be equally correct if the printer sets it up aright or makes the same blunder?
116.—THE CONVERTED MISER.Mr. Jasper Bullyon was one of the very few misers who have ever been converted to a sense of their duty towards their less fortunate fellow-men. One eventful night he counted out his accumulated wealth, and resolved to distribute it amongst the deserving poor.
He found that if he gave away the same number of pounds every day in the year, he could exactly spread it over a twelvemonth without there being anything left over; but if he rested on the Sundays, and only gave away a fixed number of pounds every weekday, there would be one sovereign left over on New Year's Eve. Now, putting it at the lowest possible, what was the exact number of pounds that he had to distribute?
Could any question be simpler? A sum of pounds divided by one number of days leaves no remainder, but divided by another number of days leaves a sovereign over. That is all; and yet, when you come to tackle this little question, you will be surprised that it can become so puzzling.
117.—A FENCE PROBLEM.The practical usefulness of puzzles is a point that we are liable to overlook. Yet, as a matter of fact, I have from time to time received quite a large number of letters from individuals who have found that the mastering of some little principle upon which a puzzle was built has proved of considerable value to them in a most unexpected way. Indeed, it may be accepted as a good maxim that a puzzle is of little real value unless, as well as being amusing and perplexing, it conceals some instructive and possibly useful feature. It is, however, very curious how these little bits of acquired knowledge dovetail into the occasional requirements of everyday life, and equally curious to what strange and mysterious uses some of our readers seem to apply them. What, for example, can be the object of Mr. Wm. Oxley, who writes to me all the way from Iowa, in wishing to ascertain the dimensions of a field that he proposes to enclose, containing just as many acres as there shall be rails in the fence?
The man wishes to fence in a perfectly square field which is to contain just as many acres as there are rails in the required fence. Each hurdle, or portion of fence, is seven rails high, and two lengths would extend one pole (16½ ft.): that is to say, there are fourteen rails to the pole, lineal measure. Now, what must be the size of the field?
118.—CIRCLING THE SQUARES.The puzzle is to place a different number in each of the ten squares so that the sum of the squares of any two adjacent numbers shall be equal to the sum of the squares of the two numbers diametrically opposite to them. The four numbers placed, as examples, must stand as they are. The square of 16 is 256, and the square of 2 is 4. Add these together, and the result is 260. Also—the square of 14 is 196, and the square of 8 is 64. These together also make 260. Now, in precisely the same way, B and C should be equal to G and H (the sum will not necessarily be 260), A and K to F and E, H and I to C and D, and so on, with any two adjoining squares in the circle.
All you have to do is to fill in the remaining six numbers. Fractions are not allowed, and I shall show that no number need contain more than two figures.119.—RACKBRANE'S LITTLE LOSS.
Professor Rackbrane was spending an evening with his old friends, Mr. and Mrs. Potts, and they engaged in some game (he does not say what game) of cards. The professor lost the first game, which resulted in doubling the money that both Mr. and Mrs. Potts had laid on the table. The second game was lost by Mrs. Potts, which doubled the money then held by her husband and the professor. Curiously enough, the third game was lost by Mr. Potts, and had the effect of doubling the money then held by his wife and the professor. It was then found that each person had exactly the same money, but the professor had lost five shillings in the course of play. Now, the professor asks, what was the sum of money with which he sat down at the table? Can you tell him?
120.—THE FARMER AND HIS SHEEP.Farmer Longmore had a curious aptitude for arithmetic, and was known in his district as the "mathematical farmer." The new vicar was not aware of this fact when, meeting his worthy parishioner one day in the lane, he asked him in the course of a short conversation, "Now, how many sheep have you altogether?" He was therefore rather surprised at Longmore's answer, which was as follows: "You can divide my sheep into two different parts, so that the difference between the two numbers is the same as the difference between their squares. Maybe, Mr. Parson, you will like to work out the little sum for yourself."
Can the reader say just how many sheep the farmer had? Supposing he had possessed only twenty sheep, and he divided them into the two parts 12 and 8. Now, the difference between their squares, 144 and 64, is 80. So that will not do, for 4 and 80 are certainly not the same. If you can find numbers that work out correctly, you will know exactly how many sheep Farmer Longmore owned.
121.—HEADS OR TAILS.Crooks, an inveterate gambler, at Goodwood recently said to a friend, "I'll bet you half the money in my pocket on the toss of a coin—heads I win, tails I lose." The coin was tossed and the money handed over. He repeated the offer again and again, each time betting half the money then in his possession. We are not told how long the game went on, or how many times the coin was tossed, but this we know, that the number of times that Crooks lost was exactly equal to the number of times that he won. Now, did he gain or lose by this little venture?
122.—THE SEE-SAW PUZZLE.Necessity is, indeed, the mother of invention. I was amused the other day in watching a boy who wanted to play see-saw and, in his failure to find another child to share the sport with him, had been driven back upon the ingenious resort of tying a number of bricks to one end of the plank to balance his weight at the other.
As a matter of fact, he just balanced against sixteen bricks, when these were fixed to the short end of plank, but if he fixed them to the long end of plank he only needed eleven as balance.
Now, what was that boy's weight, if a brick weighs equal to a three-quarter brick and three-quarters of a pound?
"A client of mine," said a lawyer, "was on the point of death when his wife was about to present him with a child. I drew up his will, in which he settled two-thirds of his estate upon his son (if it should happen to be a boy) and one-third on the mother. But if the child should be a girl, then two-thirds of the estate should go to the mother and one-third to the daughter. As a matter of fact, after his death twins were born—a boy and a girl. A very nice point then arose. How was the estate to be equitably divided among the three in the closest possible accordance with the spirit of the dead man's will?"
124.—A QUESTION OF DEFINITION."My property is exactly a mile square," said one landowner to another.
"Curiously enough, mine is a square mile," was the reply.
"Then there is no difference?"
Is this last statement correct?
125.—THE MINERS' HOLIDAY.
Seven coal-miners took a holiday at the seaside during a big strike. Six of the party spent exactly half a sovereign each, but Bill Harris was more extravagant. Bill spent three shillings more than the average of the party. What was the actual amount of Bill's expenditure?
126.—SIMPLE MULTIPLICATION.If we number six cards 1, 2, 4, 5, 7, and 8, and arrange them on the table in this order:—
1 4 2 8 5 7
We can demonstrate that in order to multiply by 3 all that is necessary is to remove the 1 to the other end of the row, and the thing is done. The answer is 428571. Can you find a number that, when multiplied by 3 and divided by 2, the answer will be the same as if we removed the first card (which in this case is to be a 3) From the beginning of the row to the end?
127.—SIMPLE DIVISION.Sometimes a very simple question in elementary arithmetic will cause a good deal of perplexity. For example, I want to divide the four numbers, 701, 1,059, 1,417, and 2,312, by the largest number possible that will leave the same remainder in every case. How am I to set to work Of course, by a laborious system of trial one can in time discover the answer, but there is quite a simple method of doing it if you can only find it.
128.—A PROBLEM IN SQUARES.We possess three square boards. The surface of the first contains five square feet more than the second, and the second contains five square feet more than the third. Can you give exact measurements for the sides of the boards? If you can solve this little puzzle, then try to find three squares in arithmetical progression, with a common difference of 7 and also of 13.
129.—THE BATTLE OF HASTINGS.All historians know that there is a great deal of mystery and uncertainty concerning the details of the ever-memorable battle on that fatal day, October 14, 1066. My puzzle deals with a curious passage in an ancient monkish chronicle that may never receive the attention that it deserves, and if I am unable to vouch for the authenticity of the document it will none the less serve to furnish us with a problem that can hardly fail to interest those of my readers who have arithmetical predilections. Here is the passage in question.
"The men of Harold stood well together, as their wont was, and formed sixty and one squares, with a like number of men in every square thereof, and woe to the hardy Norman who ventured to enter their redoubts; for a single blow of a Saxon war-hatchet would break his lance and cut through his coat of mail.... When Harold threw himself into the fray the Saxons were one mighty square of men, shouting the battle-cries, 'Ut!' 'Olicrosse!' 'Godemitè!'"
Now, I find that all the contemporary authorities agree that the Saxons did actually fight in this solid order. For example, in the "Carmen de Bello Hastingensi," a poem attributed to Guy, Bishop of Amiens, living at the time of the battle, we are told that "the Saxons stood fixed in a dense mass," and Henry of Huntingdon records that "they were like unto a castle, impenetrable to the Normans;" while Robert Wace, a century after, tells us the same thing. So in this respect my newly-discovered chronicle may not be greatly in error. But I have reason to believe that there is something wrong with the actual figures. Let the reader see what he can make of them.
The number of men would be sixty-one times a square number; but when Harold himself joined in the fray they were then able to form one large square. What is the smallest possible number of men there could have been?
In order to make clear to the reader the simplicity of the question, I will give the lowest solutions in the case of 60 and 62, the numbers immediately preceding and following 61. They are 60 × 42 + 1 = 312, and 62 × 82 + 1 = 632. That is, 60 squares of 16 men each would be 960 men, and when Harold joined them they would be 961 in number, and so form a square with 31 men on every side. Similarly in the case of the figures I have given for 62. Now, find the lowest answer for 61.
130.—THE SCULPTOR'S PROBLEM.An ancient sculptor was commissioned to supply two statues, each on a cubical pedestal. It is with these pedestals that we are concerned. They were of unequal sizes, as will be seen in the illustration, and when the time arrived for payment a dispute arose as to whether the agreement was based on lineal or cubical measurement. But as soon as they came to measure the two pedestals the matter was at once settled, because, curiously enough, the number of lineal feet was exactly the same as the number of cubical feet. The puzzle is to find the dimensions for two pedestals having this peculiarity, in the smallest possible figures. You see, if the two pedestals, for example, measure respectively 3 ft. and 1 ft. on every side, then the lineal measurement would be 4 ft. and the cubical contents 28 ft., which are not the same, so these measurements will not do.
131.—THE SPANISH MISER.There once lived in a small town in New Castile a noted miser named Don Manuel Rodriguez. His love of money was only equalled by a strong passion for arithmetical problems. These puzzles usually dealt in some way or other with his accumulated treasure, and were propounded by him solely in order that he might have the pleasure of solving them himself. Unfortunately very few of them have survived, and when travelling through Spain, collecting material for a proposed work on "The Spanish Onion as a Cause of National Decadence," I only discovered a very few. One of these concerns the three boxes that appear in the accompanying authentic portrait.
Each box contained a different number of golden doubloons. The difference between the number of doubloons in the upper box and the number in the middle box was the same as the difference between the number in the middle box and the number in the bottom box. And if the contents of any two of the boxes were united they would form a square number. What is the smallest number of doubloons that there could have been in any one of the boxes?
132.—THE NINE TREASURE BOXES.The following puzzle will illustrate the importance on occasions of being able to fix the minimum and maximum limits of a required number. This can very frequently be done. For example, it has not yet been ascertained in how many different ways the knight's tour can be performed on the chess board; but we know that it is fewer than the number of combinations of 168 things taken 63 at a time and is greater than 31,054,144—for the latter is the number of routes of a particular type. Or, to take a more familiar case, if you ask a man how many coins he has in his pocket, he may tell you that he has not the slightest idea. But on further questioning you will get out of him some such statement as the following: "Yes, I am positive that I have more than three coins, and equally certain that there are not so many as twenty-five." Now, the knowledge that a certain number lies between 2 and 12 in my puzzle will enable the solver to find the exact answer; without that information there would be an infinite number of answers, from which it would be impossible to select the correct one.
This is another puzzle received from my friend Don Manuel Rodriguez, the cranky miser of New Castile. On New Year's Eve in 1879 he showed me nine treasure boxes, and after informing me that every box contained a square number of golden doubloons, and that the difference between the contents of A and B was the same as between B and C, D and E, E and F, G and H, or H and I, he requested me to tell him the number of coins in every one of the boxes. At first I thought this was impossible, as there would be an infinite num