Electronics Module by Sam Kinyera OBWOYA - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

5.11.

A

V

=

V δ

5.11

( )

out

4 ref

Where A is the gain of the IA andδ is the change in the resistance of the sensor cor-

responding to some physical action. Here only, δ is being amplified.

Activity 5.4

Capacitance to Voltage

Activity 5.4.1 Motivation

The electrical property of capacitance is a physical principle behind many of the

sensors because it is a property which varies directly proportionally to the distance

between the metal plates.

Capacitors can be used as sensors which can detect the presence of an object between

their plates. This is because capacitors are sensitive to the material that resides between

their metal plates. Thus, this principle can be used as a detector to determine when

someone enters a space. In the case of the piezoelectric sensor, we use the fact that

the voltage of a charged capacitor will vary inversely proportional to its capacitance.

The output voltage is amplified to a usable level by an op-amp circuit.

Activity 5.4.2 Circuits

This activity briefly describes how capacitance can be measured. It should be noted

that capacitance can be measured in the same ways for measuring resistance i.e by

using a voltage divider or a bridge circuit, See Fig. 5. 9 and Fig. 5.10. Instead of using

index-127_1.jpg

index-127_2.png

index-127_3.png

index-127_4.png

index-127_5.png

index-127_6.png

index-127_7.png

index-127_8.png

index-127_9.png

index-127_10.png

index-127_11.png

index-127_12.png

index-127_13.png

index-127_14.png

index-127_15.png

index-127_16.png

index-127_17.png

index-127_18.png

index-127_19.png

index-127_20.png

index-127_21.png

index-127_22.png

index-127_23.png

index-127_24.png

index-127_25.png

index-127_26.png

index-127_27.png

index-127_28.png

index-127_29.png

index-127_30.png

index-127_31.png

index-127_32.png

index-127_33.png

index-127_34.png

index-127_35.png

index-127_36.png

index-127_37.png

index-127_38.png

index-127_39.png

index-127_40.png

index-127_41.png

index-127_42.png

index-127_43.png

index-127_44.png

index-127_45.png

index-127_46.png

index-127_47.png

index-127_48.png

index-127_49.png

index-127_50.png

index-127_51.png

index-127_52.png

index-127_53.png

index-127_54.png

index-127_55.png

index-127_56.png

index-127_57.png

index-127_58.png

index-127_59.png

index-127_60.png

index-127_61.png

index-127_62.png

index-127_63.png

index-127_64.png

index-127_65.png

index-127_66.png

index-127_67.png

index-127_68.png

index-127_69.png

index-127_70.png

index-127_71.png

index-127_72.png

index-127_73.png

index-127_74.png

index-127_75.png

index-127_76.png

index-127_77.png

index-127_78.png

index-127_79.png

index-127_80.png

index-127_81.png

index-127_82.png

index-127_83.png

index-127_84.png

index-127_85.png

index-127_86.png

index-127_87.png

index-127_88.png

index-127_89.png

index-127_90.png

index-127_91.png

index-127_92.png

index-127_93.png

index-127_94.png

index-127_95.png

index-127_96.png

African Virtual University

resistors, capacitors are used. However, one critical difference is that V must be a

ref

sinusoidal signal since the capacitor blocks DC.

Activity 5.5

Data Acquisition

In this section you will learn about the functions of the different sections of data ac-

quistion. Fig. 5.11 shows the steps into which Data acquisition can be divided. Each

step of the data acquistion process: Anti-aliasing; sample/Hold ; and Quantization

are described as follows.

Figure 5.11 Data Acquisition

Activity 5.5.1 Anti-aliasing

The essential requirement is that all signals must be bandlimited to less than half the

sampling rate of the sampling system. For broad spectrum signals, an analog lowpass

filter must be placed before the data acquisition system. The minimum attenuation

of this filter at the aliasing frequency should be at least:

A in = 20log 3∗ 2B

(

)

5.12

( )

m

Where B is the number of bits of the ADC. This formula is derived from the fact that

there is a minimum noise level inherent in the sampling process and there is no need

to attenuate the sensor signal more than to below this noise level.

Task 5.3 Further reading and Note making

(a) Use Compulsory Reading 5 and other references to write short notes on

- the problems with the Anti-aliasing Filter:

- how the problems can be solved.

index-128_1.jpg

African Virtual University

Activity 5.5.2 Sample and Hold

In this section you will learn that:

The purpose of the sample and hold circuitry is to take a snapshot of the sensor signal

and hold the value. This happens once every sample period when the switch connects

the capacitor to the signal conditioning circuit. During this period, the capacitor holds

the voltage value measured until a new sample is acquired. Amidst all these the ADC

must have a stable signal in order to accurately perform a conversion. Fig. 5.13

is an equivalent circuit for the sample and hold circuit. Many times, the sample and

hold circuitry is incorporated into the same integrated circuit package.

C

Figure 5.13 Equivalent Circuit for a Sample and Hold

However, a Sample and Hold circuit has problems which are attributed to: Finite

Aperture Time; Signal Feedthrough; and Signal Droop.

Activity 5.5

Analog to Digital Conversion

In this section you will learn that:

(i) The purpose of the analog to digital is to quantize the input signal from the

sample and hold circuit to 2B discrete levels - where B is the number of bits

of the analog to digital converter (ADC).

(ii) The input voltage can range from 0 to V (or

to +

for a bipolar

ref

−Vref

+Vref

ADC). What this means is that the voltage reference of the ADC is used to

set the range of conversion of the ADC.

(iii) For a monopolar ADC, a 0 V input will cause the converter to output all ze-

ros.

(iv) If the input to the ADC is equal to or larger thanV then the converter will

ref

output all ones.

(v) For inputs between these two voltage levels, the ADC will output binary

numbers corresponding to the signal level.

(vi) For a bipolar ADC, the minimum input is

and not 0 V.

−Vref

index-129_1.jpg

index-129_2.png

index-129_3.png

index-129_4.png

index-129_5.png

index-129_6.png

index-129_7.png

index-129_8.png

index-129_9.png

index-129_10.png

index-129_11.png

index-129_12.png

index-129_13.png

index-129_14.png

index-129_15.png

index-129_16.png

index-129_17.png

index-129_18.png

index-129_19.png

index-129_20.png

index-129_21.png

index-129_22.png

index-129_23.png

index-129_24.png

index-129_25.png

index-129_26.png

index-129_27.png

index-129_28.png

index-129_29.png

index-129_30.png

index-129_31.png

index-129_32.png

index-129_33.png

index-129_34.png

index-129_35.png

index-129_36.png

index-129_37.png

index-129_38.png

index-129_39.png

index-129_40.png

index-129_41.png

index-129_42.png

index-129_43.png

index-129_44.png

index-129_45.png

index-129_46.png

index-129_47.png

index-129_48.png

index-129_49.png

index-129_50.png

index-129_51.png

index-129_52.png

index-129_53.png

index-129_54.png

index-129_55.png

index-129_56.png

index-129_57.png

index-129_58.png

index-129_59.png

index-129_60.png

index-129_61.png

index-129_62.png

index-129_63.png

index-129_64.png

index-129_65.png

index-129_66.png

index-129_67.png

index-129_68.png

index-129_69.png

index-129_70.png

index-129_71.png

index-129_72.png

index-129_73.png

index-129_74.png

index-129_75.png

index-129_76.png

index-129_77.png

index-129_78.png

index-129_79.png

index-129_80.png

index-129_81.png

index-129_82.png

index-129_83.png

index-129_84.png

index-129_85.png

index-129_86.png

index-129_87.png

index-129_88.png

index-129_89.png

index-129_90.png

index-129_91.png

index-129_92.png

index-129_93.png

index-129_94.png

index-129_95.png

index-129_96.png

index-129_97.png

index-129_98.png

index-129_99.png

index-129_100.png

index-129_101.png

index-129_102.png

index-129_103.png

index-129_104.png

index-129_105.png

index-129_106.png

index-129_107.png

index-129_108.png

index-129_109.png

index-129_110.png

index-129_111.png

index-129_112.png

index-129_113.png

index-129_114.png

index-129_115.png