Edison: His Life and Inventions by F. L. Dyer and T. C. Martin - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

Edison's Method In Inventing

WHILE the world's progress depends largely upon their ingenuity, inventors are not usually persons who have adopted invention as a distinct profession, but, generally speaking, are otherwise engaged in various walks of life. By reason of more or less inherent native genius they either make improvements along lines of present occupation, or else evolve new methods and means of accomplishing results in fields for which they may have personal predilections.

Now and then, however, there arises a man so greatly endowed with natural powers and originality that the creative faculty within him is too strong to endure the humdrum routine of affairs, and manifests itself in a life devoted entirely to the evolution of methods and devices calculated to further the world's welfare. In other words, he becomes an inventor by profession. Such a man is Edison. Notwithstanding the fact that nearly forty years ago (not a great while after he had emerged from the ranks of peripatetic telegraph operators) he was the owner of a large and profitable business as a manufacturer of the telegraphic apparatus invented by him, the call of his nature was too strong to allow of profits being laid away in the bank to accumulate. As he himself has said, he has "too sanguine a temperament to allow money to stay in solitary confinement." Hence, all superfluous cash was devoted to experimentation. In the course of years he grew more and more impatient of the shackles that bound him to business routine, and, realizing the powers within him, he drew away gradually from purely manufacturing occupations, determining deliberately to devote his life to inventive work, and to depend upon its results as a means of subsistence.

All persons who make inventions will necessarily be more or less original in character, but to the man who chooses to become an inventor by profession must be conceded a mind more than ordinarily replete with virility and originality. That these qualities in Edison are superabundant is well known to all who have worked with him, and, indeed, are apparent to every one from his multiplied achievements within the period of one generation.

If one were allowed only two words with which to describe Edison, it is doubtful whether a close examination of the entire dictionary would disclose any others more suitable than "experimenter--inventor." These would express the overruling characteristics of his eventful career. It is as an "inventor" that he sets himself down in the membership list of the American Institute of Electrical Engineers. To attempt the strict placing of these words in relation to each other (except alphabetically) would be equal to an endeavor to solve the old problem as to which came first, the egg or the chicken; for although all his inventions have been evolved through experiment, many of his notable experiments have called forth the exercise of highly inventive faculties in their very inception. Investigation and experiment have been a consuming passion, an impelling force from within, as it were, from his petticoat days when he collected goose-eggs and tried to hatch them out by sitting over them himself. One might be inclined to dismiss this trivial incident smilingly, as a mere childish, thoughtless prank, had not subsequent development as a child, boy, and man revealed a born investigator with original reasoning powers that, disdaining crooks and bends, always aimed at the centre, and, like the flight of the bee, were accurate and direct.

It is not surprising, therefore, that a man of this kind should exhibit a ceaseless, absorbing desire for knowledge, and an apparently uncontrollable tendency to experiment on every possible occasion, even though his last cent were spent in thus satisfying the insatiate cravings of an inquiring mind.

During Edison's immature years, when he was flitting about from place to place as a telegraph operator, his experimentation was of a desultory, hand-to-mouth character, although it was always notable for originality, as expressed in a number of minor useful devices produced during this period. Small wonder, then, that at the end of these wanderings, when he had found a place to "rest the sole of his foot," he established a laboratory in which to carry on his researches in a more methodical and practical manner. In this was the beginning of the work which has since made such a profound impression on contemporary life.

There is nothing of the helter-skelter, slap-dash style in Edison's experiments. Although all the laboratory experimenters agree in the opinion that he "tries everything," it is not merely the mixing of a little of this, some of that, and a few drops of the other, in the HOPE that SOMETHING will come of it. Nor is the spirit of the laboratory work represented in the following dialogue overheard between two alleged carpenters picked up at random to help on a hurry job.

"How near does she fit, Mike?"

 

"About an inch."

 

"Nail her!"

A most casual examination of any of the laboratory records will reveal evidence of the minutest exactitude insisted on in the conduct of experiments, irrespective of the length of time they occupied. Edison's instructions, always clear cut and direct, followed by his keen oversight, admit of nothing less than implicit observance in all details, no matter where they may lead, and impel to the utmost minuteness and accuracy.

To some extent there has been a popular notion that many of Edison's successes have been due to mere dumb fool luck--to blind, fortuitous "happenings." Nothing could be further from the truth, for, on the contrary, it is owing almost entirely to the comprehensive scope of his knowledge, the breadth of his conception, the daring originality of his methods, and minuteness and extent of experiment, com- bined with unwavering pertinacity, that new arts have been created and additions made to others already in existence. Indeed, without this tireless minutiae, and methodical, searching spirit, it would have been practically impossible to have produced many of the most important of these inventions.
Needless to say, mastery of its literature is regarded by him as a most important preliminary in taking up any line of investigation. What others may have done, bearing directly or collaterally on the subject, in print, is carefully considered and sifted to the point of exhaustion. Not that he takes it for granted that the conclusions are correct, for he frequently obtains vastly different results by repeating in his own way experiments made by others as detailed in books.

"Edison can travel along a well-used road and still find virgin soil," remarked recently one of his most practical experimenters, who had been working along a certain line without attaining the desired result. "He wanted to get a particular compound having definite qualities, and I had tried in all sorts of ways to produce it but with only partial success. He was confident that it could be done, and said he would try it himself. In doing so he followed the same path in which I had travelled, but, by making an undreamed-of change in one of the operations, succeeded in producing a compound that virtually came up to his specifications. It is not the only time I have known this sort of thing to happen."

In speaking of Edison's method of experimenting, another of his laboratory staff says: "He is never hindered by theory, but resorts to actual experiment for proof. For instance, when he conceived the idea of pouring a complete concrete house it was universally held that it would be impossible because the pieces of stone in the mixture would not rise to the level of the pouring-point, but would gravitate to a lower plane in the soft cement. This, however, did not hinder him from making a series of experiments which resulted in an invention that proved conclusively the contrary."

Having conceived some new idea and read everything obtainable relating to the subject in general, Edison's fertility of resource and originality come into play. Taking one of the laboratory note-books, he will write in it a memorandum of the experiments to be tried, illustrated, if necessary, by sketches. This book is then passed on to that member of the experimental staff whose special training and experience are best adapted to the work. Here strenuousness is expected; and an immediate commencement of investigation and prompt report are required. Sometimes the subject may be such as to call for a long line of frequent tests which necessitate patient and accurate attention to minute details. Results must be reported often--daily, or possibly with still greater frequency. Edison does not forget what is going on; but in his daily tours through the laboratory keeps in touch with all the work that is under the hands of his various assistants, showing by an instant grasp of the present conditions of any experiment that he has a full consciousness of its meaning and its reference to his original conception.

The year 1869 saw the beginning of Edison's career as an acknowledged inventor of commercial devices. From the outset, an innate recognition of system dictated the desirability and wisdom of preserving records of his experiments and inventions. The primitive records, covering the earliest years, were mainly jotted down on loose sheets of paper covered with sketches, notes, and data, pasted into large scrap- books, or preserved in packages; but with the passing of years and enlargement of his interests, it became the practice to make all original laboratory notes in large, uniform books. This course was pursued until the Menlo Park period, when he instituted a new regime that has been continued down to the present day. A standard form of note-book, about eight and a half by six inches, containing about two hundred pages, was adopted. A number of these books were (and are now) always to be found scattered around in the different sections of the laboratory, and in them have been noted by Edison all his ideas, sketches, and memoranda. Details of the various experiments concerning them have been set down by his assistants from time to time.

These later laboratory note-books, of which there are now over one thousand in the series, are eloquent in the history they reveal of the strenuous labors of Edison and his assistants and the vast fields of research he has covered during the last thirty years. They are overwhelmingly rich in biographic material, but analysis would be a prohibitive task for one person, and perhaps interesting only to technical readers. Their pages cover practically every department of science. The countless thousands of separate experiments recorded exhibit the operations of a master mind seeking to surprise Nature into a betrayal of her secrets by asking her the same question in a hundred different ways. For instance, when Edison was investigating a certain problem of importance many years ago, the note-books show that on this point alone about fifteen thousand experiments and tests were made by one of his assistants.

A most casual glance over these note-books will illustrate the following remark, which was made to one of the writers not long ago by a member of the laboratory staff who has been experimenting there for twenty years: "Edison can think of more ways of doing a thing than any man I ever saw or heard of. He tries everything and never lets up, even though failure is apparently staring him in the face. He only stops when he simply can't go any further on that particular line. When he decides on any mode of procedure he gives his notes to the experimenter and lets him alone, only stepping in from time to time to look at the operations and receive reports of progress."

The history of the development of the telephone transmitter, phonograph, incandescent lamp, dynamo, electrical distributing systems from central stations, electric railway, oremilling, cement, motion pictures, and a host of minor inventions may be found embedded in the laboratory note-books. A passing glance at a few pages of these written records will serve to illustrate, though only to a limited extent, the thoroughness of Edison's method. It is to be observed that these references can be but of the most meagre kind, and must be regarded as merely throwing a side-light on the subject itself. For instance, the complex problem of a practical telephone transmitter gave rise to a series of most exhaustive experiments. Combinations in almost infinite variety, including gums, chemical compounds, oils, minerals, and metals were suggested by Edison; and his assistants were given long lists of materials to try with reference to predetermined standards of articulation, degrees of loudness, and perfection of hissing sounds. The notebooks contain hundreds of pages showing that a great many thousands of experiments were tried and passed upon. Such remarks as "N. G."; "Pretty good"; "Whistling good, but no articulation"; "Rattly"; "Articulation, whispering, and whistling good"; "Best tonight so far"; and others are noted opposite the various combinations as they were tried. Thus, one may follow the investigation through a maze of experiments which led up to the successful invention of the carbon button transmitter, the vital device to give the telephone its needed articulation and perfection.
The two hundred and odd note-books, covering the strenuous period during which Edison was carrying on his electric-light experiments, tell on their forty thousand pages or more a fascinating story of the evolution of a new art in its entirety. From the crude beginnings, through all the varied phases of this evolution, the operations of a master mind are apparent from the contents of these pages, in which are recorded the innumerable experiments, calculations, and tests that ultimately brought light out of darkness.

The early work on a metallic conductor for lamps gave rise to some very thorough research on melting and alloying metals, the preparation of metallic oxides, the coating of fine wires by immersing them in a great variety of chemical solutions. Following his usual custom, Edison would indicate the lines of experiment to be followed, which were carried out and recorded in the note-books. He himself, in January, 1879, made personally a most minute and searching investigation into the properties and behavior of plating-iridium, boron, rutile, zircon, chromium, molybdenum, and nickel, under varying degrees of current strength, on which there may be found in the notes about forty pages of detailed experiments and deductions in his own handwriting, concluding with the remark (about nickel): "This is a great discovery for electric light in the way of economy."

This period of research on nickel, etc., was evidently a trying one, for after nearly a month's close application he writes, on January 27, 1879: "Owing to the enormous power of the light my eyes commenced to pain after seven hours' work, and I had to quit." On the next day appears the following entry: "Suffered the pains of hell with my eyes last night from 10 P.M. till 4 A.M., when got to sleep with a big dose of morphine. Eyes getting better, and do not pain much at 4 P.M.; but I lose to-day."

The "try everything" spirit of Edison's method is well illustrated in this early period by a series of about sixteen hundred resistance tests of various ores, minerals, earths, etc., occupying over fifty pages of one of the note-books relating to the metallic filament for his lamps.

But, as the reader has already learned, the metallic filament was soon laid aside in favor of carbon, and we find in the laboratory notes an amazing record of research and experiment conducted in the minute and searching manner peculiar to Edison's method. His inquiries were directed along all the various roads leading to the desired goal, for long before he had completed the invention of a practical lamp he realized broadly the fundamental requirements of a successful system of electrical distribution, and had given instructions for the making of a great variety of calculations which, although far in advance of the time, were clearly foreseen by him to be vitally important in the ultimate solution of the complicated problem. Thus we find many hundreds of pages of the notebooks covered with computations and calculations by Mr. Upton, not only on the numerous ramifications of the projected system and comparisons with gas, but also on proposed forms of dynamos and the proposed station in New York. A mere recital by titles of the vast number of experiments and tests on carbons, lamps, dynamos, armatures, commutators, windings, systems, regulators, sockets, vacuum-pumps, and the thousand and one details relating to the subject in general, originated by Edison, and methodically and systematically carried on under his general direction, would fill a great many pages here, and even then would serve only to convey a confused impression of ceaseless probing.

It is possible only to a broad, comprehensive mind well stored with knowledge, and backed with resistless, boundless energy, that such a diversified series of experiments and investigations could be carried on simultaneously and assimilated, even though they should relate to a class of phenomena already understood and well defined. But if we pause to consider that the commercial subdivision of the electric current (which was virtually an invention made to order) involved the solution of problems so unprecedented that even they themselves had to be created, we cannot but conclude that the afflatus of innate genius played an important part in the unique methods of investigation instituted by Edison at that and other times.

The idea of attributing great successes to "genius" has always been repudiated by Edison, as evidenced by his historic remark that "Genius is 1 per cent. inspiration and 99 per cent. perspiration." Again, in a conversation many years ago at the laboratory between Edison, Batchelor, and E. H. Johnson, the latter made allusion to Edison's genius as evidenced by some of his achievements, when Edison replied:

"Stuff! I tell you genius is hard work, stick-to-it- iveness, and common sense."

"Yes," said Johnson, "I admit there is all that to it, but there's still more. Batch and I have those qualifications, but although we knew quite a lot about telephones, and worked hard, we couldn't invent a brand-new non-infringing telephone receiver as you did when Gouraud cabled for one. Then, how about the subdivision of the electric light?"

"Electric current," corrected Edison.

"True," continued Johnson; "you were the one to make that very distinction. The scientific world had been working hard on subdivision for years, using what appeared to be common sense. Results worse than nil. Then you come along, and about the first thing you do, after looking the ground over, is to start off in the opposite direction, which subsequently proves to be the only possible way to reach the goal. It seems to me that this is pretty close to the dictionary definition of genius."

It is said that Edison replied rather incoherently and changed the topic of conversation.

This innate modesty, however, does not prevent Edison from recognizing and classifying his own methods of investigation. In a conversation with two old associates recently (April, 1909), he remarked: "It has been said of me that my methods are empirical. That is true only so far as chemistry is concerned. Did you ever realize that practically all industrial chemistry is colloidal in its nature? Hard rubber, celluloid, glass, soap, paper, and lots of others, all have to deal with amorphous substances, as to which comparatively little has been really settled. My methods are similar to those followed by Luther Burbank. He plants an acre, and when this is in bloom he inspects it. He has a sharp eye, and can pick out of thousands a single plant that has promise of what he wants. From this he gets the seed, and uses his skill and knowledge in producing from it a number of new plants which, on development, furnish the means of propagating an improved variety in large quantity. So, when I am after a chemical result that I have in mind, I may make hundreds or thousands of experiments out of which there may be one that promises results in the right direction. This I follow up to its legitimate conclusion, discarding the others, and usually get what I am after. There is no doubt about this being empirical; but when it comes to problems of a mechanical nature, I want to tell you that all I've ever tackled and solved have been done by hard, logical thinking." The intense earnestness and emphasis with which this was said were very impressive to the auditors. This empirical method may perhaps be better illustrated by a specific example. During the latter part of the storage battery investigations, after the form of positive element had been determined upon, it became necessary to ascertain what definite proportions and what quality of nickel hydrate and nickel flake would give the best results. A series of positive tubes were filled with the two materials in different proportions--say, nine parts hydrate to one of flake; eight parts hydrate to two of flake; seven parts hydrate to three of flake, and so on through varying proportions. Three sets of each of these positives were made, and all put into separate test tubes with a uniform type of negative element. These were carried through a long series of charges and discharges under strict test conditions. From the tabulated results of hundreds of tests there were selected three that showed the best results. These, however, showed only the superiority of cer- tain PROPORTIONS of the materials. The next step would be to find out the best QUALITY. Now, as there are several hundred variations in the quality of nickel flake, and perhaps a thousand ways to make the hydrate, it will be realized that Edison's methods led to stupendous detail, for these tests embraced a trial of all the qualities of both materials in the three proportions found to be most suitable. Among these many thousands of experiments any that showed extraordinary results were again elaborated by still further series of tests, until Edison was satisfied that he had obtained the best result in that particular line.

The laboratory note-books do not always tell the whole story or meaning of an experiment that may be briefly outlined on one of their pages. For example, the early filament made of a mixture of lampblack and tar is merely a suggestion in the notes, but its making afforded an example of Edison's pertinacity. These materials, when mixed, became a friable mass, which he had found could be brought into such a cohesive, puttylike state by manipulation, as to be capable of being rolled out into filaments as fine as seven-thousandths of an inch in cross-section. One of the laboratory assistants was told to make some of this mixture, knead it, and roll some filaments. After a time he brought the mass to Edison, and said:

"There's something wrong about this, for it crumbles even after manipulating it with my fingers."

 

"How long did you knead it?" said Edison.

 

"Oh! more than an hour," replied the assistant.

"Well, just keep on for a few hours more and it will come out all right," was the rejoinder. And this proved to be correct, for, after a prolonged kneading and rolling, the mass changed into a cohesive, stringy, homogeneous putty. It was from a mixture of this kind that spiral filaments were made and used in some of the earliest forms of successful incandescent lamps; indeed, they are described and illustrated in Edison's fundamental lamp patent (No. 223,898).

The present narrative would assume the proportions of a history of the incandescent lamp, should the authors attempt to follow Edison's investigations through the thousands of pages of note-books away back in the eighties and early nineties. Improvement of the lamp was constantly in his mind all those years, and besides the vast amount of detail experimental work he laid out for his assistants, he carried on a great deal of research personally. Sometimes whole books are filled in his own handwriting with records of experiments showing every conceivable variation of some particular line of inquiry; each trial bearing some terse comment expressive of results. In one book appear the details of one of these experiments on September 3, 1891, at 4.30 A.M., with the comment: "Brought up lamp higher than a 16-c.p. 240 was ever brought before--Hurrah!" Notwithstanding the late hour, he turns over to the next page and goes on to write his deductions from this result as compared with those previously obtained. Proceeding day by day, as appears by this same book, he follows up another line of investigation on lamps, apparently full of difficulty, for after one hundred and thirty-two other recorded experiments we find this note: "Saturday 3.30 went home disgusted with incandescent lamps." This feeling was evidently evanescent, for on the succeeding Monday the work was continued and carried on by him as keenly as before, as shown by the next batch of notes.

This is the only instance showing any indication of impatience that the authors have found in looking through the enormous mass of laboratory notes. All his assistants agree that Edison is the most patient, tireless experimenter that could be conceived of. Failures do not distress him; indeed, he regards them as always useful, as may be gathered from the following, related by Dr. E. G. Acheson, formerly one of his staff: "I once made an experiment in Edison's laboratory at Menlo Park during the latter part of 1880, and the results were not as looked for. I considered the experiment a perfect failure, and while bemoaning the results of this apparent failure Mr. Edison entered, and, after learning the facts of the case, cheerfully remarked that I should not look upon it as a failure, for he considered every experiment a success, as in all cases it cleared up the atmosphere, and even though it failed to accomplish the results sought for, it should prove a valuable lesson for guidance in future work. I believe that Mr. Edison's success as an experimenter was, to a large extent, due to this happy view of all experiments."

Edison has frequently remarked that out of a hundred experiments he does not expect more than one to be successful, and as to that one he is always suspicious until frequent repetition has verified the original results.

This patient, optimistic view of the outcome of experiments has remained part of his character down to this day, just as his painstaking, minute, incisive methods are still unchanged. But to the careless, stupid, or lazy person he is a terror for the short time they remain around him. Honest mistakes may be tolerated, but not carelessness, incompetence, or lack of attention to business. In such cases Edison is apt to express himself freely and forcibly, as when he was asked why he had parted with a certain man, he said: "Oh, he was so slow that it would take him half an hour to get out of the field of a microscope." Another instance will be illustrative. Soon after the Brockton (Massachusetts) central station was started in operation many years ago, he wrote a note to Mr. W. S. Andrews, containing suggestions as to future stations, part of which related to the various employees and their duties. After outlining the duties of the meter man, Edison says: "I should not take too young a man for this, say, a man from twenty- three to thirty years old, bright and businesslike. Don't want any one who yearns to enter a laboratory and experiment. We have a bad case of that at Brockton; he neglects business to potter. What we want is a good lamp average and no unprofitable customer. You should have these men on probation and subject to passing an examination by me. This will wake them up."

Edison's examinations are no joke, according to Mr. J. H. Vail, formerly one of the Menlo Park staff. "I wanted a job," he said, "and was ambitious to take charge of the dynamo-room. Mr. Edison led me to a heap of junk in a corner and said: `Put that to- gether and let me know when it's running.' I didn't know what it was, but received a liberal education in finding out. It proved to be a dynamo, which I finally succeeded in assembling and running. I got the job." Another man who succeeded in winning a place as assistant was Mr. John F. Ott, who has remained in his employ for over forty years. In 1869, when Edison was occupying his first manufacturing shop (the third floor of a small building in Newark), he wanted a first-class mechanician, and Mr. Ott was sent to him. "He was then an ordinary-looking young fellow," says Mr. Ott, "dirty as any of the other workmen, unkempt, and not much better dressed than a tramp, but I immediately felt that there was a great deal in him." This is the conversation that ensued, led by Mr. Edison's question:

"What do you want?"

 

" Work."

 

"Can you make this machine work?" (exhibiting it and explaining its details).

 

"Yes."

 

"Are you sure?"

 

"Well, you needn't pay me if I don't."

 

And thus Mr. Ott went to work and succeeded in accomplishing the results desired. Two weeks afterward Mr. Edison put him in charge of the shop.

Edison's life fairly teems with instances of unruffled patience in the pursuit of experiments. When he feels thoroughly impressed with the possibility of accomplishing a certain thing, he will settle down composedly to investigate it to the end.

This is well illustrated in a story relating to his invention of the type of storage battery bearing his name. Mr. W. S. Mallory, one of his closest associates for many years, is the authority for the following: "When Mr. Edison decided to shut down the ore- milling plant at Edison, New Jersey, in which I had been associated with him, it became a problem as to what he could profitably take up next, and we had several discussions about it. He finally thought that a good storage battery was a great requisite, and decided to try and devise a new type, for he declared emphatically he would make no battery requiring sulphuric acid. After a little thought he conceived the nickel-iron idea, and started to work at once with characteristic energy. About 7 or 7.30 A.M. he would go down to the laboratory and experiment, only stopping for a short time at noon to eat a lunch sent down from the house. About 6 o'clock the carriage would call to take him to dinner, from which he would return by 7.30 or 8 o'clock to resume work. The carriage came again at midnight to take him home, but frequently had to wait until 2 or 3 o'clock, and sometimes return without him, as he had decided to continue all night.

"This had been going on more than five months, seven days a week, when I was called down to the laboratory to see him. I found him at a bench about three feet wide and twelve to fifteen feet long, on which there were hundreds of little test cells that had been made up by his corps of chemists and experimenters. He was seat