Linear Controller Design: Limits of Performance by Stephen Boyd and Craig Barratt - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

CHAPTER 12 SOME ANALYTIC SOLUTIONS

=

h

1

1

3 + 2p2

)

k

k

1 + 2Ttrk

i.e., any h that satis es the constraints in (12.47) has an objective that exceeds the

objective of our candidate solution (12.52). This proves that our guess is correct.

(The origin of this mysterious is explained in the Notes and References.)

From our solution (12.52) of the optimization problem (12.47), we conclude that

the speci cations corresponding to Emax and Ttrk are achievable if and only if

Emax(1 + 2Ttrk) > 3 + 2p2:

(12.56)

(We leave the construction of a controller that meets the speci cations for Emax

and Ttrk satisfying (12.56) to the reader.) This region of achievable speci cations

is shown in gure 12.6.

5

4:5

4

3:5

3

Emax 2:5

2

1:5

1

0:5

0

0

0:5

1

1:5

2

T2:5 3 3:5 4 4:5 5

trk

The tradeo between peak tracking error and tracking band-

Figure

12.6

width specications.

Note that to guarantee that the worst case peak tracking error does not exceed

10%, the weighting lter smoothing time constant must be at least Ttrk 28:64,

which is much greater than the time constants in the dynamics of P0, which are on

the order of one second. In classical terminology, the tracking bandwidth is consid-

erably smaller than the open-loop bandwidth. The necessarily poor performance

implied by the tradeo curve (12.56) is a quantitative expression that this plant is

\hard to control".

index-300_1.png

index-300_2.png

index-300_3.png

index-300_4.png

index-300_5.png

NOTES AND REFERENCES

291

Notes and References

LQR and LQG-Optimal Controllers

Standard references on LQR and LQG-optimal controllers are the books by Anderson

and Moore AM90], Kwakernaak and Sivan KS72], Bryson and Ho BH75], and the

special issue edited by Athans Ath71]. Astrom and Wittenmark treat minimum variance

regulators in AW90]. The same techniques are readily extended to solve problems that

involve an exponentially weighted 2 norm see, e.g., Anderson and Moore AM69].

H

Multicriterion LQG

The articles by Toivonen Toi84] and Toivonen and Makila TM89] discuss the multicri-

terion LQG problem the latter article has extensive references to other articles on this

topic. See also Koussoulas and Leondes KL86].

Controllers that Satisfy an

Norm-Bound

H

1

In Zam81], Zames proposed that the

norm of some appropriate closed-loop trans-

H

1

fer matrix be minimized, although control design specications that limit the magnitude

of closed-loop transfer functions appeared much earlier. The state-space solution of sec-

tion 12.3 is recent, and is due to Doyle, Glover, Khargonekar, and Francis DGK89, GD88].

Previous solutions to the feasibility problem with an

norm-bound on were consid-

H

H

1

erably more complex.

We noted above that the controller me of section 12.3 not only satises the speci-

K

cation (12.26) it minimizes the -entropy of . This is discussed in Mustafa and

H

Glover Mus89, MG90, GM89]. The minimum entropy controller was developed inde-

pendently by Whittle Whi90], who calls it the linear exponential quadratic Gaussian

(LEQG) optimal controller.

Some Other Analytic Solutions

In OF85, OF86], O'Young and Francis use Nevanlinna-Pick theory to deduce exact trade-

o curves that limit the maximum magnitude of the sensitivity transfer function in two

dierent frequency bands.

Some analytic solutions to discrete-time problems involving the peak gain have been found

by Dahleh and Pearson see Vid86, DP87b, DP88b, DP87a, DP88a].

About Figure 12.4

The step response shown in gure 12.4 was found as follows. We let

20

( ) =

10

X

i

(12.57)

T

s

x

i

=1

+ 10

s

i

where

20 is to be determined. (See chapter 15 for an explanation of this Ritz

x

2

R

approximation.) ( ) must satisfy the condition (12.34). The constraint ( ) = 0 is

T

s

T

1

automatically satised the interpolation condition (1) = 0 yields the equality constraint

T

on ,x

T

= 0

(12.58)

c

x

index-301_1.png

index-301_2.png

index-301_3.png

index-301_4.png

index-301_5.png

index-301_6.png

index-301_7.png

index-301_8.png

index-301_9.png

index-301_10.png

index-301_11.png

index-301_12.png

index-301_13.png

index-301_14.png

index-301_15.png

index-301_16.png

index-301_17.png

index-301_18.png

index-301_19.png

index-301_20.png

index-301_21.png

index-301_22.png

index-301_23.png

index-301_24.png

index-301_25.png

index-301_26.png

index-301_27.png

index-301_28.png

index-301_29.png

index-301_30.png

index-301_31.png

index-301_32.png

index-301_33.png

index-301_34.png

index-301_35.png

index-301_36.png

index-301_37.png

index-301_38.png

index-301_39.png

index-301_40.png

index-301_41.png

index-301_42.png

index-301_43.png

index-301_44.png

index-301_45.png

index-301_46.png

index-301_47.png

index-301_48.png

index-301_49.png

index-301_50.png

index-301_51.png

index-301_52.png

index-301_53.png

index-301_54.png

index-301_55.png

index-301_56.png

index-301_57.png

index-301_58.png

index-301_59.png

index-301_60.png

index-301_61.png

index-301_62.png

index-301_63.png

index-301_64.png

index-301_65.png

index-301_66.png

index-301_67.png

index-301_68.png

index-301_69.png

index-301_70.png

index-301_71.png

index-301_72.png

index-301_73.png

index-301_74.png

index-301_75.png

index-301_76.png

index-301_77.png

index-301_78.png

index-301_79.png

index-301_80.png

index-301_81.png

index-301_82.png

index-301_83.png

index-301_84.png

index-301_85.png

index-301_86.png

index-301_87.png

index-301_88.png

index-301_89.png

index-301_90.png

index-301_91.png

292