Linear Controller Design: Limits of Performance by Stephen Boyd and Craig Barratt - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

CHAPTER 16 DISCUSSION AND CONCLUSIONS

index-392_1.png

index-392_2.png

index-392_3.png

index-392_4.png

Notation and Symbols

Basic Notation

Notation

Meaning

Delimiters for sets, and for statement grouping in

f

g

algorithms in chapter 14.

(

)

Delimiters for expressions.

f : X Y

A function from the set X into the set Y .

!

The empty set.

Conjunction of predicates \and".

^

A norm see page 69. A particular norm is indicated

k

k

with a mnemonic subscript.

@ (x)

The subdi erential of the functional at the point x

see page 293.

=

Equals by de nition.

Equals to rst order.

'

Approximately equal to (used in vague discussions).

<

The inequality holds to rst order.

X

A rst order change in X.

arg min

A minimizer of the argument. See page 58.

The complex numbers.

C

n

The vector space of n-component complex vectors.

C

m n

The vector space of m n complex matrices.

C

X

The expected value of the random variable X.

E

(z)

The imaginary part of a complex number z.

=

383

index-393_1.png

index-393_2.png

index-393_3.png

index-393_4.png

384

NOTATION AND SYMBOLS

inf

The in mum of a function or set. The reader

unfamiliar with the notation inf can substitute min

without ill e ect.

j

A square root of 1.

;

limsup

The asymptotic supremum of a function see page 72.

(Z)

The probability of the event Z.

Prob

(z)

The real part of a complex number z.

<

The real numbers.

R

+

The nonnegative real numbers.

Rn

The vector space of n-component real vectors.

R

m n

The vector space of m n real matrices.

R

i(M)

The ith singular value of a matrix M: the square root

of the ith largest eigenvalue of M M.

max(M)

The maximum singular value of a matrix M: the

square root of the largest eigenvalue of M M.

sup

The supremum of a function or set. The reader

unfamiliar with the notation sup can substitute max

without ill e ect.

M

The trace of a matrix M: the sum of its entries on the

T

r

diagonal.

M 0

The n n complex matrix M is positive semide nite,

i.e., z Mz 0 for all z

n.

2

C

M > 0

The n n complex matrix M is positive de nite, i.e.,

z Mz > 0 for all nonzero z

n.

2

C

0

The n-component real-valued vector has

nonnegative entries, i.e.,

n+.

2

R

MT

The transpose of a matrix or transfer matrix M.

M

The complex conjugate transpose of a matrix or

transfer matrix M.

M1=2

A symmetric square root of a matrix M = M

0,

i.e., M1=2M1=2 = M.

index-394_1.png

index-394_2.png

index-394_3.png

index-394_4.png

NOTATION AND SYMBOLS

385

Global Symbols

Symbol

Meaning

Page

A function from the space of transfer matrices to real

53

numbers, i.e., a functional on . A particular

H

function is indicated with a mnemonic subscript.

'

The restriction of a functional to a

252

nite-dimensional domain, i.e., a function from n to

R

. A particular function is indicated with a

R

mnemonic subscript.

A design speci cation: a predicate or boolean function

47

D

on . A particular design speci cation is indicated

H

with a mnemonic subscript.

H

The closed-loop transfer matrix from w to z.

33

Hab

The closed-loop transfer matrix from the signal b to

32

the signal a.

The set of all nz nw transfer matrices. A particular

48

H

subset of (i.e., a design speci cation) is indicated

H

with a mnemonic subscript.

K

The transfer matrix of the controller.

32

L

The classical loop gain, L = P0K.

36

nw

The number of exogenous inputs, i.e., the size of w.

26

nu

The number of actuator inputs, i.e., the size of u.

26

nz

The number of regulated variables, i.e., the size of z.

26

ny

The number of sensed outputs, i.e., the size of y.

26

P

The transfer matrix of the plant.

31

P0

The transfer matrix of a classical plant, which is

34

usually one part of the plant model P.

S

The classical sensitivity transfer function or matrix.

36 41

T

The classical I/O transfer function or matrix.

36 41

w

Exogenous input signal vector.

25

u

Actuator input signal vector.

25

z

Regulated output signal vector.

26

y

Sensed output signal vector.

26

index-395_1.png

index-395_2.png

index-395_3.png

index-395_4.png

index-395_5.png

index-395_6.png

index-395_7.png

index-395_8.png

386

NOTATION AND SYMBOLS

Other Symbols

Symbol

Meaning

Page

A feedback perturbation.

221

A set of feedback perturbations.

221

x

The Euclidean norm of a vector x

n or x n,

70

k

k

2

R

2

C

i.e., px x.

u 1

The 1 norm of the signal u.

81

k

k

L

u 2

The 2 norm of the signal u.

80

k

k

L

u

The peak magnitude norm of the signal u.

70

k

k

1

u aa

The average-absolute value norm of the signal u.

74

k

k

u rms

The RMS norm of the signal u.

72

k

k

u ss

The steady-state peak magnitude norm of the signal u.

72

k

k

1

H 2

The 2 norm of the transfer function H.

96 110

k

k

H

H

The

norm of the transfer function H.

112 112

k

k

H

1

1

H a

The a-shifted

norm of the transfer function H.

100

k

k

H

1

1

H hankel

The Hankel norm of the transfer function H.

103

k

k

H pk step

The peak of the step response of the transfer function

95

k

k

H.

H pk gn

The peak gain of the transfer function H.

97 111

k

k

H rms w

The RMS response of the transfer function H when

96

k

k

driven by the stochastic signal w.

H rms gn

The RMS gain of the transfer function H, equal to its 99 112

k

k

norm.

H

1

H wc

A worst case norm of the transfer function H.

97

k

k

The region of achievable speci cations in performance

139

A

space.

AP Bw Bu

The matrices in a state-space representation of the

43

Cz Cy Dzw

plant.

Dzu Dyw Dyu

(u)

The crest factor of a signal u.

91

CF

( )

The dead-zone function.

230

Dz

I (H)

The -entropy of the transfer function H.

113

nproc

A process noise, often actuator-referred.

35

nsensor

A sensor noise.

35

index-396_1.png

index-396_2.png

index-396_3.png

index-396_4.png

NOTATION AND SYMBOLS

387

u(a)

The amplitude distribution function of the signal u.

76

F

h(t)

The impulse response of the transfer function H at

96

time t.

H(a) H(b)

The closed-loop transfer matrices from w to z achieved

42

H(c) H(d)

by the four controllers K(a) K(b) K(c) K(d) in our

standard example system.

K(a) K(b)

The four controllers in our standard example system.

42

K(c) K(d)

A perturbed plant set.

211

P

Pstd

0

The transfer function of our standard example

41

classical plant.

p q

Auxiliary inputs and outputs used in the perturbation

221

feedback form.

s

Used for both complex frequency, s = + j!, and the

step response of a transfer function or matrix

(although not usually in the same equation).

( )

The saturation function.

220

Sat

sgn( )

The sign function.

97

T1 T2 T3

Stable transfer matrices used in the free parameter

156

representation of achievable closed-loop transfer

matrices.

?

A submatrix or entry of H not relevant to the current

172

discussion.

The minimum value of the function .

311

x

A minimizing argument of the function , i.e.,

311

= (x ).

(f)

The total variation of the function f.

98

Tv

index-397_1.png

index-397_2.png

index-397_3.png

index-397_4.png

388

NOTATION AND SYMBOLS

index-398_1.png

index-398_2.png

index-398_3.png

index-398_4.png

List of Acronyms

Acronym

Meaning

Page

1-DOF

One Degree-Of-Freedom

37

2-DOF

Two Degree-Of-Freedom

39

ARE

Algebraic Riccati Equation

122

FIR

Finite Impulse Response

380

I/O

Input/Output

38

LQG

Linear Quadratic Gaussian

278

LQR

Linear Quadratic Regulator

275

LTI

Linear Time-Invariant

29

MAMS

Multiple-Actuator, Multiple-Sensor

40

MIMO

Multiple-Input, Multiple-Output

110

PID

Proportional plus Integral plus Derivative

5

QP

Quadratic Program

345

RMS

Root-Mean-Square

72

SASS

Single-Actuator, Single-Sensor

34

SISO

Single-Input, Single-Output

95

389

index-399_1.png

index-399_2.png

index-399_3.png

index-399_4.png

390

LIST OF ACRONYMS

index-400_1.png

index-400_2.png

index-400_3.png

index-400_4.png

Bibliography

Aar51]

M. R. Aaron. Synthesis of feedback control systems by means of the closed

loop function. Trans. AIEE, 70:1439{1445, 1951.

ABJ86] B. Anderson, R. Bitmead, C. Johnson, P. Kokotovic, R. Kosut, I. Mareels, L.

Praly, and B. Riedle. Stability of Adaptive Systems: Passivity and Averaging

Analysis. MIT Press, 1986.

ac100]

ac-100 manual. Integrated Systems, Inc., 1988.

Ack85]

J. Ackermann. Sampled-Data Control Systems. Springer-Verlag, 1985.

AD84]

V. Anantharam and C. A. Desoer. On the stabilization of nonlinear systems.

IEEE Trans. Aut. Control, AC-29(6):569{572, June 1984.

AF66]

M. Athans and P. Falb. Optimal Control. McGraw-Hill, 1966.

AIE51]

AIEE Committee Report. Proposed symbols and terms for feedback control

systems. Electrical Engineering, 70:905{909, 1951.

Akg84]

M. Akgul. Topics in Relaxation and Ellipsoidal Methods. Volume 97 of Re-

search Notes in Mathematics, Pitman, 1984.

AL84]

W. F. Arnold and A. J. Laub. Generalized eigenproblem algorithms and soft-

ware for algebraic Riccati equations. Proc. IEEE, 72(12):1746{1754, December

1984.

All80]

R. Allan. New applications open up for silicon sensors. Electronics, 113{122,

November 1980.

AM69]

B. Anderson and J. B. Moore. Linear system optimization with prescribed

degree of stability. Proc. IEE, 116(12):2083{2087, December 1969.

AM90]

B. Anderson and J. B. Moore. Optimal Control: Linear Quadratic Methods.

Prentice-Hall, 1990.

AN87]

E. J. Anderson and P. Nash. Linear Programming in Innite-Dimensional

Spaces: Theory and Applications. John Wiley & Sons, 1987.

And67]

B. Anderson. An algebraic solution to the spectral factorization problem.

IEEE Trans. Aut. Control, AC-12(4):410{414, 1967.

AP84]

E. J. Anderson and A. B. Philpott, editors. Innite Programming, Springer-

Verlag Lecture Notes in Economics and Mathematical Systems, September

1984.

AS82]

Y. I. Al'ber and S. V. Shil'man. A unied approach to the problem of minimiz-

ing smooth and nonsmooth functions. Engineering Cybernetics, 20(1):21{27,

1982.

391

index-401_1.png

index-401_2.png

index-401_3.png

index-401_4.png

392

BIBLIOGRAPHY

AS84]

P. J. Antsaklis and M. K. Sain. Feedback controller parameterizations: nite

hidden modes and causality. In S. G. Tzafestas, editor, Multivariable Control,

pages 85{104, D. Reidel, 1984.

Ast83]

K. J. Astrom. Computer aided modelling, analysis and design of control

systems|A perspective. IEEE Control Syst. Mag., 4{16, May 1983.

AT90]

D. Auslander and C. Tham. Real-time Software for Control: Program Exam-

ples in c. Prentice-Hall, 1990.

Ath71]

M. Athans. Special issue on the Linear-Quadratic-Gaussian problem. IEEE

Trans. Aut. Control, AC-16, December 1971.

Aub79]

J. P. Aubin. Applied Functional Analysis. John Wiley & Sons, 1979.

AV82]

J. P. Aubin and R. Vinter, editors. Convex Analysis and Optimization. Pitman,

1982.

AW89]

K. J. Astrom and B. Wittenmark. Adaptive Control. Addison-Wesley, 1989.

AW90]

K. J. Astrom and B. Wittenmark. Computer Controlled Systems: Theory and

Design. Prentice-Hall, second edition, 1990.

BB89]

C. Barratt and S. Boyd. Example of exact tradeos in linear controller design.

IEEE Control Syst. Mag., 9(1):46{52, January 1989.

BB90]

S. Boyd and V. Balakrishnan. A regularity result for the singular values of

a transfer matrix and a quadratically convergent algorithm for computing its

-norm. Syst. Control Letters, 15(1), 1990.

L

1

BBB88] S. Boyd, V. Balakrishnan, C. Barratt, N. Khraishi, X. Li, D. Meyer, and S.

Norman. A new CAD method and associated architectures for linear con-

trollers. IEEE Trans. Aut. Control, AC-33(3):268{283, March 1988.

BBK89] S. Boyd, V. Balakrishnan, and P. Kabamba. A bisection method for computing

the

norm of a transfer matrix and related problems. Mathematics of

H

1

Control, Signals, and Systems, 2(3):207{219, 1989.

BBN90] S. Boyd, C. Barratt, and S. Norman. Linear controller design: Limits of

performance via convex optimization. Proc. IEEE, 78(3):529{574, March 1990.

BD85]

S. Boyd and C. A. Desoer. Subharmonic functions and performance bounds

on linear time-invariant feedback systems. IMA J. of Mathematical Control

and Information, 2:153{170, 1985.

BD86]

A. Bhaya and C. A. Desoer. Necessary and sucient conditions on (=

Q

( +

) ) for stabilization of the linear feedback system (

).

;1

Syst.

C

I

P

C

S

P

C

Control Letters, 7(1):35{38, February 1986.

BD87]

S. Boyd and J. Doyle. Comparison of peak and RMS gains for discrete-time

systems. Syst. Control Letters, 9:1{6, June 1987.

Ben76]

S. Bennett. The emergence of a discipline: Automatic control 1940-1960.

Automatica, 12:113{121, 1976.

Ben79]

S. Bennett. A History of Control Engineering 1800{1930. Volume 8 of IEE

Control Engineering Series, IEE, 1979.

Ber56]

J. E. Bertram. Factors in the design of digital controllers for sampled-data

feedback systems. AIEE Transactions, 75:151{59, July 1956.

BF68]

S. Blum and K. A. Fegley. A quadratic programming solution of the minimum

energy control problem. IEEE Trans. Aut. Control, 206{207, April 1968.

index-402_1.png

index-402_2.png

index-402_3.png

index-402_4.png

BIBLIOGRAPHY

393

BGT81] R. G. Bland, D. Goldfarb, and M. J. Todd. The ellipsoid method: a survey.

Operations Research, 29(6):1039{1091, 1981.

BH75]

A. E. Bryson and Y. C. Ho. Applied Optimal Control. Hemisphere Publishing,

1975.

Big58]

S. C. Bigelow. The design of analog computer compensated control systems.

AIEE Transactions, 77:409{15, November 1958.

BJ70]

G. Box and G. Jenkins. Time Series: Data Analysis and Theory. Holden-Day,

1970.

Bla34]

H. S. Black. Stabilized feedback ampliers. Bell Syst. Tech. J., 13:1{18, 1934.

Bod45]

H. W. Bode. Network Analysis and Feedback Amplier Design. Van Nostrand,

1945.

Boy86]