Radio Frequency by Steve Winder and Joe Carr - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

10.1 Transmitters

10.1.1 Transmitter functions

1. To generate the radio frequency carrier and amplify it to an appropriate power level; the RF power output.
2. To modulate the carrier with the intelligence to the pre-determined level; the modulation depth for AM, the deviation for FM or PM. The process must introduce the minimum noise and distortion, and prevent the modulation from exceeding the permitted level.
3. Radiate the minimum signals at frequencies outside the permitted bandwidth. Out-of-band or spurious radiation is strictly controlled by the Radiocommunications Agency MPT specifications.

10.1.2 Amplitude-modulated transmitters

Figure 10.1 is a block diagram of an amplitude modulated transmitter; in this case a quartz crystal oscillator generates the carrier frequency, although a frequency synthesizer could equally well be used. The carrier frequency in an AM transmitter is usually generated either at the transmitted frequency or one of its subharmonics; 2nd, 3rd or 6th subharmonic frequencies are typical choices depending on the final frequency.

The output of the oscillator is amplified to the level of the specified power output and if the oscillator runs at a subharmonic a frequency multiplier stage will be included, as in Figure 10.1, in the amplifier chain before the final stage, the power amplifier (PA). A tuned filter in the aerial circuit removes from the output unwanted frequencies which might cause interference with other users. A matching circuit correctly matches the impedance of the filter circuit to that of the aerial to ensure maximum power transfer.

In the audio circuits, the speech input from the microphone is processed by controlling the range of frequencies it contains and limiting its amplitude. This eliminates the risk of over-modulation and the production of out-of-band frequencies. Over-modulation produces

143

 

Crystal Frequency Frequency oscillator
multiplier multiplier

× 2 × 3 Drive amplifier RF powerTunedamplifier

and filter modulator

Audio
processor AF power amplifier

Figure 10.1 Crystal controlled AM transmitter

out-of-band frequencies in any transmitter, but with AM once 100% modulation is exceeded frequencies are produced across a wide range of the spectrum: a disastrous situation for other users. After processing, the audio is amplified in an AM transmitter to a high level and applied to the RF power amplifier to vary its output in the form illustrated in Figure 8.2.

AM transmitters are power inefficient. The RF PA cannot operate in class C. It must be linear so as not to distort the speech, and the audio, when it is the power amplifier which is modulated, must be amplified to a high power. If the modulation is applied at a lower power level (in an early stage of the amplifier chain) all the subsequent amplifiers must operate in a linear, but inefficient, manner.

The power output of an AM transmitter is normally specified in terms of the RMS value of the carrier power but the average and peak powers will depend on the depth of modulation, 100% modulation producing a peak power of twice the carrier peak power (see Chapter 8).

10.1.3 Angle modulated transmitters

Figure 10.2 is a block diagram of a frequency modulated transmitter using a frequency synthesizer for carrier generation. The frequency is generated at the final frequency and RF amplifiers raise the power level to that specified for the transmitter output. When a crystal oscillator is used for carrier generation, it must operate at a very low frequency because a quartz crystal oscillator can be frequency modulated by a few radians only. Several stages of the RF amplifier chain then operate as frequency multipliers. Similar filter and aerial matching circuits to those of an AM transmitter are necessary in the output arrangements of the transmitter.

The audio processing circuitry is similar to that for AM transmitters but the modulation (deviation) is applied to a stage operating at a very low RF power level (directly to the VCO in a synthesizerequipped transmitter and immediately following the crystal oscillator in a direct crystal controlled one); high power audio is not necessary. An additional simple circuit in an FM transmitter may be included to enhance the higher audio frequencies at a rate of 6 dB/octave. This is pre-emphasis and has the merit of improving the level of speech to noise at the receiver (signal-to-noise ratio). The audio level must still be limited because, while the effect of over-deviation is not as disastrous as over-modulation in an AM transmitter, increasing deviation produces a steadily increasing range of frequencies, known as sidecurrents, outside the permitted bandwidth.

Reference crystal
oscillator DC

Comparator
Voltage controlled oscillator RF Drive RF power Tuned

amplifiers amplifier amplifier filter
Programmable divider
Audio
processor
Figure 10.2 Synthesizer controlled FM transmitter

Angle modulated transmitters are more power efficient than amplitude modulated because the modulation is applied at a low power level and also, as no audio frequencies are directly present in the RF amplifier and PA stages, these can operate efficiently in class C.

Phase modulated (PM) transmitters, because the phase shift with modulation is very small, generate the carrier at a very low frequency and use direct crystal control. The frequency is then multiplied many times, thirty-two to thirty-six is common, up to the final frequency. After multiplication, the phase modulation which was originally a few radians has effectively become frequency modulation. The phase modulation process produces pre-emphasis inherently. As far as the user is concerned there is no practical difference between phase modulation and frequency modulation with added pre-emphasis.

10.1.4 Transmitter specifications

In the UK, the Radiocommunications Agency issues specifications with which all equipment must comply. Other countries have their own regulatory bodies, such as the FCC in the USA. These specifications are concerned principally with the prevention of interference and obtaining the maximum use of the frequency spectrum. The characteristics defined in the MPT specifications and other features which affect the user, apart from the physical dimensions, are:

Supply voltage.
Operational frequency band.
Modulation method.
Channel separation.
RF power output and impedance. Output ranges from about 0.5 W to 5 W for hand-portables and 5 W to 25 W for mobiles. The maximum power permitted on a system will be specified in the Licence. Output impedance is commonly 50 .
Spurious emissions. The level of these is critical for the prevention of interference with other users on different frequencies. The limit for VHF and UHF is a maximum of 0.25µW.
Residual noise. Not always quoted by manufacturers, it is the noise level existing on an unmodulated carrier. A typical figure is better than −40 dB referred to full deviation.
Audio frequency distortion. Typically <3% and usually measured with a modulating frequency of 1 kHz at 60% modulation.
Audio frequency response. This is the variation of modulation level over the audio frequency spectrum. Typically within+1dBto−3dB over a frequency range of 300 to 3000 Hz (2.55 kHz for 12.5 kHz channel spacing equipment). It may be quoted with reference to a pre-emphasis curve.
Switching bandwidth. This is the frequency range over which the transmitter will operate without retuning and without degradation of performance. Much equipment is now specified to cover a complete frequency band, e.g. 146–174 MHz, without retuning.