Radio Frequency by Steve Winder and Joe Carr - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

12.1 Encryption principles

Radio communication was never secret, but since the advent of fast frequency scanning receivers the ability to overhear, even on cellular radio telephones, is within easy reach of anyone. Privacy systems are, however, available which will deter the casual listener and gain time against the determined eavesdropper.

Messages, which may be either speech or data, are encrypted to prevent both eavesdropping and the injection of spurious information. The aim is to make the encryption and decryption as easy and inexpensive as possible for authorized users and time-consuming, difficult and costly for the eavesdropper (cryptanalyst). Figure 12.1 shows a standard cryptographic channel.

Plain text
message M

Cryptanalyst Estimated message M

Encrypt Cipher text
Public channel Decrypt
Plain text M

K
Secure channel Key K Figure 12.1 Cryptographic channel

A plain text message M (speech, written or digital) is encrypted by mixing with a key K to produce a cipher text. The cipher text may be transmitted over a channel which is accessible to the public and hence to the cryptanalyst. The key is issued via a secure channel to the authorized recipient who uses it to decipher the message. The cryptanalyst without access to the key attempts to derive the maximum information from the cipher text to enable him or her to estimate the content of the message.

One key may be used continuously or for long periods or, to increase the cryptanalyst’s confusion, the key may be changed frequently, perhaps even for each character of the message. A sequence of

167 key changes which repeats after a fixed number of characters produces what is known as periodic encryption.

Encryption may be either symmetrical or asymmetrical. Symmetrical encryption uses the same key for both encryption and decryption. Asymmetrical encryption uses a different key for each process, thus providing for different levels of authorization. Encryption keys may be supplied to many persons who are authorized to transmit encrypted messages but decryption keys may be issued to only a few authorized recipients.