[204] Steven G. Johnson and J. D. Joannopoulos. Block-iterative
frequency-domain methods for maxwell’s equations in a
planewave basis. Optics Express, 8(3):1738211;190, 2001.
[205] Douglas L. Jones.
The DFT, FFT, and Practi-
cal Spectral Analysis.
Connexions, February 2007.
http://cnx.org/content/col10281/1.2/.
[206] Douglas L. Jones.
The DFT, FFT, and Practi-
cal Spectral Analysis.
Connexions, February 2007.
http://cnx.org/content/col10281/1.2/.
[207] Alan H. Karp. Bit reversal on uniprocessors. SIAM Rev.,
38(1):18211;26, 1996.
[208] Donald E. Knuth. The Art of Computer Programming, Vol.
2, Seminumerical Algorithms. Addison-Wesley, Reading,
MA, third edition, 1997.
[209] Donald E. Knuth. The Art of Computer Programming, Vol.
2, Seminumerical Algorithms. Addison-Wesley, Reading,
MA, third edition, 1997.
[210] Donald E. Knuth. Fundamental Algorithms, volume 1 of
The Art of Computer Programming. Addison-Wesley, 3nd
edition, 1997.
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
BIBLIOGRAPHY
325
[211] John F. Kohne. A quick fourier transform algorithm. Tech-
nical report TR-1723, Naval Electronics Laboratory Center,
July 1980.
[212] D. P. Kolba and T. W. Parks.
A prime factor fft algo-
rithm using high speed convolution. IEEE Trans. on ASSP,
25:2818211;294, August 1977. also in.
[213] D. P. Kolba and T. W. Parks.
A prime factor fft algo-
rithm using high speed convolution. IEEE Trans. on ASSP,
25:2818211;294, August 1977. also in.
[214] D. P. Kolba and T. W. Parks.
A prime factor fft algo-
rithm using high speed convolution. IEEE Trans. on ASSP,
25:2818211;294, August 1977. also in.
[215] H. Krishna, B. Krishna, K.-Y. Lin, and J.-D. Sun. Computa-
tional Number Theory and Digital Signal Processing. CRC
Press, Boca Raton, FL, 1994.
[216] Z. Li, H. V. Sorensen, and C. S. Burrus. Fft and convolution
algorithms for dsp microprocessors. In Proceedings of the
IEEE International Conference on Acoustics, Speech, and
Signal Processing, page 2848211;292, Tokyo, Japan, April
1986.
[217] J. S. Lim and A. V. Oppenheim. Advanced Topics in Signal
Processing. Prentice-Hall, Englewood Cliffs, NJ, 1988.
[218] J. S. Lim and A. V. Oppenheim. Advanced Topics in Signal
Processing. Prentice-Hall, Englewood Cliffs, NJ, 1988.
[219] Jae S. Lim and A. V. Oppenheim. Advanced Topics in Signal
Processing, chapter 4. Prentice-Hall, 1988.
[220] C. M. Loeffler and C. S. Burrus. Equivalence of block filter
representations. In Proceedings of the 1981 IEEE Interna-
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
326
BIBLIOGRAPHY
tional Symposium on Circuits and Systems, pages 546–550,
Chicago, IL, April 1981.
[221] C. M. Loeffler and C. S. Burrus.
Periodically
time8211;varying bandwidth compressor. In Proceedings of
the IEEE International Symposium on Circuits and Systems,
page 6638211;665, Rome, Italy, May 1982.
[222] C. M. Loeffler and C. S. Burrus. Optimal design of pe-
riodically time varying and multirate digital filters. IEEE
Transactions on Acoustics, Speech, and Signal Processing,
ASSP-32(5):991–924, October 1984.
[223] Chao Lu, James W. Cooley, and Richard Tolimieri. Fft algo-
rithms for prime transform sizes and their implementations
on vax, ibm3090vf, and ibm rs/6000. IEEE Transactions on
Signal Processing, 41(2):6388211;648, February 1993.
[224] D. P-K. Lun and W-C. Siu. An analysis for the realization
of an in-place and in-order prime factor algorithm. IEEE
Transactions on Signal Processing, 41(7):23628211;2370,
July 1993.
[225] T. Lundy and J. Van Buskirk.
A new matrix approach
to real ffts and convolutions of length.
Computing,
80(1):238211;45, 2007.
[226] J. D. Markel. Fft pruning. IEEE Trans on Audio and Elec-
troacoustics, 19(4):3058211;311, June 1971.
[227] J. B. Martens. Recursive cyclotomic factorization 8211; a
new algorithm for calculating the discrete fourier transform.
IEEE Trans. on ASSP, 32(4):7508211;762, August 1984.
[228] J. B. Martens. Recursive cyclotomic factorization 8211; a
new algorithm for calculating the discrete fourier transform.
IEEE Trans. on ASSP, 32(4):7508211;762, August 1984.
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
BIBLIOGRAPHY
327
[229] J. B. Martens. Recursive cyclotomic factorization 8211; a
new algorithm for calculating the discrete fourier transform.
IEEE Trans. on ASSP, 32(4):7508211;762, August 1984.
[230] J. B. Martens.
Recursive cyclotomic factorization8212;a
new algorithm for calculating the discrete fourier transform.
IEEE Trans. Acoust., Speech, Signal Processing, 32(4):750–
761, 1984.
[231] D. Maslen and D. Rockmore.
Generalized ffts 8211; a
survey of some recent results. In Proceedings of IMACS
Workshop in Groups and Computation, volume 28, page
1828211;238, 1995.
[232] J. H. McClellan and C. M. Rader. Number Theory in Digi-
tal Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1979.
[233] J. H. McClellan and C. M. Rader. Number Theory in Digi-
tal Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1979.
[234] J. H. McClellan and C. M. Rader. Number Theory in Digi-
tal Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1979.
[235] J. H. McClellan and C. M. Rader. Number Theory in Digi-
tal Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1979.
[236] J. H. McClellan and C. M. Rader. Number Theory in Digi-
tal Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1979.
[237] J. H. McClellan and C. M. Rader. Number Theory in Digi-
tal Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1979.
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
328
BIBLIOGRAPHY
[238] J. H. McClellan and C. M. Rader. Number Theory in Digital
Signal Processing. Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1979.
[239] J. H. McClellan and C. M. Rader. Number Theory in Digi-
tal Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1979.
[240] J. W. Meek and A. S. Veletsos. Fast convolution for recur-
sive digital filters. IEEE Transactions on Audio and Elec-
troacoustics, AU-20:938211;94, March 1972.
[241] R. Meyer, R. Reng, and K. Schwarz. Convolution algo-
rithms on dsp processors. In Proceedings of the ICASSP-91,
page 21938211;2196, Toronto, Canada, May 1991.
[242] R. Meyer and K. Schwarz. Fft implementation on dsp-chips,
Sept. 18 1990. preprint.
[243] R. Meyer, K. Schwarz, and H. W. Schuessler. Fft implemen-
tation on dsp-chips 8212; theory and practice. In Proceed-
ings of the ICASSP-90, page 15038211;1506, Albuquerque,
NM, April 1990.
[244] R. A. Meyer and C. S. Burrus.
A unified analy-
sis of multirate and periodically time varying digital fil-
ters.
IEEE Transactions on Circuits and Systems, CAS-
22(3):1628211;168, March 1975.
[245] R. A. Meyer and C. S. Burrus. Design and implementation
of multirate digital filters. IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-24(1):538211;58,
February 1976.
[246] S. K. Mitra and R. Gransekaran. A note on block implemen-
tation of iir digital filters. IEEE Transactions on Circuit and
Systems, CAS-24(7), July 1977.
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
BIBLIOGRAPHY
329
[247] S. K. Mitra and R. Gransekaran.
Block implementation
of recursive digital filters 8211; new structures and prop-
erties. IEEE Transactions on Circuit and Systems, CAS-
25(4):2008211;207, April 1978.
[248] Jacques Morgenstern. Note on a lower bound of the linear
complexity of the fast fourier transform. 20(2):305–306,
1973.
[249] L. R. Morris. Digital Signal Processing Software. DSPSW,
Inc., Toronto, Canada, 1982, 1983.
[250] L. R. Morris. Digital Signal Processing Software. DSPSW,
Inc., Toronto, Canada, 1982, 1983.
[251] L. R. Morris. Digital Signal Processing Software. DSPSW,
Inc., Toronto, Canada, 1982, 1983.
[252] Douglas G. Myers. Digital Signal Processing, Efficient Con-
volution and Fourier Transform Techniques. Prentice-Hall,
Sydney, Australia, 1990.
[253] Douglas G. Myers. Digital Signal Processing, Efficient Con-
volution and Fourier Transform Techniques. Prentice-Hall,
Sydney, Australia, 1990.
[254] Douglas G. Myers. Digital Signal Processing, Efficient Con-
volution and Fourier Transform Techniques. Prentice-Hall,
Sydney, Australia, 1990.
[255] Kenji Nakayama.
An improved fast fourier trans-
form algorithm using mixed frequency and time decima-
tions.
IEEE Trans. Acoust., Speech, Signal Processing,
36(2):2908211;292, 1988.
[256] P. J. Nicholson.
Algebraic theory of finite fourier
transforms.
Journal of Computer and System Sciences,
5:5248211;547, 1971.
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
330
BIBLIOGRAPHY
[257] P. J. Nicholson.
Algebraic theory of finite fourier
transforms.
Journal of Computer and System Sciences,
5(2):5248211;547, February 1971.
[258] Ivan Niven and H. S. Zuckerman. An Introduction to the
Theory of Numbers. John Wiley & Sons, New York, fourth
edition, 1980.
[259] Ivan Niven and H. S. Zuckerman. An Introduction to the
Theory of Numbers. John Wiley & Sons, New York, fourth
edition, 1980.
[260] Ivan Niven and H. S. Zuckerman. An Introduction to the
Theory of Numbers. John Wiley & Sons, New York, fourth
edition, 1980.
[261] H. J. Nussbaumer. Fast Fourier Transform and Convolution
Algorithms. Springer-Verlag, Heidelberg, Germany, second
edition, 1981, 1982.
[262] H. J. Nussbaumer. Fast Fourier Transform and Convolution
Algorithms. Springer-Verlag, Heidelberg, Germany, second
edition, 1981, 1982.
[263] H. J. Nussbaumer. Fast Fourier Transform and Convolution
Algorithms. Springer-Verlag, Heidelberg, Germany, second
edition, 1981, 1982.
[264] H. J. Nussbaumer. Fast Fourier Transform and Convolution
Algorithms. Springer-Verlag, Heidelberg, Germany, second
edition, 1981, 1982.
[265] H. J. Nussbaumer. Fast Fourier Transform and Convolution
Algorithms. Springer-Verlag, Heidelberg, Germany, second
edition, 1981, 1982.
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
BIBLIOGRAPHY
331
[266] H. J. Nussbaumer. Fast Fourier Transform and Convolution
Algorithms. Springer-Verlag, Heidelberg, Germany, second
edition, 1981, 1982.
[267] H. J. Nussbaumer. Fast Fourier Transform and Convolution
Algorithms. Springer-Verlag, Heidelberg, Germany, second
edition, 1981, 1982.
[268] H. J. Nussbaumer. Fast Fourier Transformation and Convo-
lution Algorithms. Springer, 2nd edition, 1982.
[269] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal
Processing. Prentice-Hall, Englewood Cliffs, NJ, 1989.
[270] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal
Processing. Prentice-Hall, Englewood Cliffs, NJ, 1989.
[271] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal
Processing. Prentice-Hall, Englewood Cliffs, NJ, second
edition, 1999. Earlier editions in 1975 and 1989.
[272] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal
Processing. Prentice-Hall, Englewood Cliffs, NJ, second
edition, 1999. Earlier editions in 1975 and 1989.
[273] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal
Processing. Prentice-Hall, Englewood Cliffs, NJ, second
edition, 1999. Earlier editions in 1975 and 1989.
[274] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal
Processing. Prentice-Hall, Englewood Cliffs, NJ, second
edition, 1999. Earlier editions in 1975 and 1989.
[275] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal
Processing. Prentice-Hall, Englewood Cliffs, NJ, second
edition, 1999. Earlier editions in 1975 and 1989.
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
332
BIBLIOGRAPHY
[276] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal
Processing. Prentice-Hall, Englewood Cliffs, NJ, second
edition, 1999. Earlier editions in 1975 and 1989.
[277] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-
Time Signal Processing. Prentice Hall, 2nd edition, 1999.
[278] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-
Time Signal Processing. Prentice-Hall, Upper Saddle River,
NJ, 2nd edition, 1999.
[279] Oystein Ore. Number Theory and Its History. McGraw-Hill,
New York, 1948.
[280] Victor Ya. Pan. The trade-off between the additive complex-
ity and the asyncronicity of linear and bilinear algorithms.
Information Proc. Lett., 22:118211;14, 1986.
[281] Christos H. Papadimitriou. Optimality of the fast fourier
transform. 26(1):95–102, 1979.
[282] T. W. Parks and C. S. Burrus. Digital Filter Design. John
Wiley & Sons, New York, 1987.
[283] T. W. Parks and C. S. Burrus. Digital Filter Design. John
Wiley & Sons, New York, 1987.
[284] T. W. Parsons. A winograd-fourier transform algorithm for
real-valued data. IEEE Trans. on ASSP, 27:398–402, August
1979.
[285] F. Perez and T. Takaoka. A prime factor fft algorithm im-
plementation using a program generation technique. IEEE
Transactions on Acoustics, Speech and Signal Processing,
35:12218211;1223, August 1987.
[286] I. Pitas and C. S. Burrus. Time and error analysis of digital
convolution by rectangular transforms. Signal Processing,
5(2):1538211;162, March 1983.
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
BIBLIOGRAPHY
333
[287] I. Pitas and C. S. Burrus. Time and error analysis of digital
convolution by rectangular transforms. Signal Processing,
5(2):1538211;162, March 1983.
[288] J. M. Pollard. The fast fourier transform in a finite field.
Mathematics of Computation, 25(114):3658211;374, April
1971.
[289] Miodrag Popovi263; and Dragutin 352;evi263;.
A new
look at the comparison of the fast hartley and fourier
transforms.
IEEE Transactions on Signal Processing,
42(8):21788211;2182, August 1994.
[290] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipes in C: The Art of Scientific Com-
puting. Cambridge Univ. Press, New York, NY, 2nd edition,
1992.
[291] M. Pschel and J. M. F. Moura. Algebraic signal processing
theory. available at http://arxiv.org/abs/cs.IT/0612077.
[292] M. Pschel and J. M. F. Moura. The algebraic approach to the
discrete cosine and sine transforms and their fast algorithms.
SIAM Journal of Computing, 32(5):12808211;1316, 2003.
[293] M. Pschel and J. M. F. Moura. Algebraic signal processing
theory: 1-d space. IEEE Transactions on Signal Processing,
56(8):3586–3599, 2008.
[294] M. Pschel and J. M. F. Moura.
Algebraic signal pro-
cessing theory:
Cooley-tukey type algorithms for dcts
and dsts.
IEEE Transactions on Signal Processing,
56(4):1502–1521, 2008.
a longer version is available at
http://arxiv.org/abs/cs.IT/0702025.
[295] M. Pschel and J. M. F. Moura. Algebraic signal processing
theory: Foundation and 1-d time. IEEE Transactions on
Signal Processing, 56(8):3572–3585, 2008.
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
334
BIBLIOGRAPHY
[296] Markus Pschel, Jos[U+FFFD] F. Moura, Jeremy R. John-
son, David Padua, Manuela M. Veloso, Bryan W. Singer,
Jianxin Xiong, Franz Franchetti, Aca Ga269;i263;, Yevgen
Voronenko, Kang Chen, Robert W. Johnson, and Nicholas
Rizzolo. Spiral: Code generation for dsp transforms. Proc.
IEEE, 93(2):232–275, 2005.
[297] Z. Qian, C. Lu, M. An, and R. Tolimieri.
Self-
sorting in-place fft algorithm with minimum working
space.
IEEE Trans. Acoust., Speech, Signal Processing,
42(10):28358211;2836, 1994.
[298] L. R. Rabiner and B. Gold. Theory and Application of Digi-
tal Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1975.
[299] L. R. Rabiner and B. Gold. Theory and Application of Digi-
tal Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1975.
[300] L. R. Rabiner and B. Gold. Theory and Application of Digi-
tal Signal Processing. Prentice-Hall, Englewood Cliffs, NJ,
1975.
[301] L. R. Rabiner and C. M. Rader, editors. Digital Signal Pro-
cessing, selected reprints. IEEE Press, New York, 1972.
[302] L. R. Rabiner and C. M. Rader, editors. Digital Signal Pro-
cessing, selected reprints. IEEE Press, New York, 1972.
[303] L. R. Rabiner and C. M. Rader, editors. Digital Signal Pro-
cessing, selected reprints. IEEE Press, New York, 1972.
[304] Lawrence Rabiner.
The chirp z-transform algorithm: a
lesson in serendipity. IEEE Signal Processing Magazine,
24:1188211;119, March 2004.
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
BIBLIOGRAPHY
335
[305] Lawrence R. Rabiner, Ronald W. Schafer, and Charles M.
Rader. The chirp -transform algorithm. IEEE Trans. Audio
Electroacoustics, 17(2):868211;92, 1969.
[306] L.R. Rabiner, R.W. Schafer, and C.M. Rader. The chirp
z-transform algorithm. IEEE Transactions on Audio Elec-
troacoustics, AU-17:868211;92, June 1969.
[307] L.R. Rabiner, R.W. Schafer, and C.M. Rader. The chirp
z-transform algorithm. IEEE Transactions on Audio Elec-
troacoustics, AU-17:868211;92, June 1969.
[308] C. M. Rader. Discrete fourier transforms when the num-
ber of data samples is prime. Proceedings of the IEEE,
56:11078211;1108, June 1968.
[309] C. M. Rader. Discrete fourier transforms when the number
of data samples is prime. Proc. IEEE, 56:11078211;1108,
June 1968.
[310] C. M. Rader and N. M. Brenner. A new principle for fast
fourier transformation.
IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-24(3):264–266, June
1976.
[311] Charles M. Rader.
Discrete convolution via mersenne
transforms.
IEEE
Transactions
on
Computers,
21(12):12698211;1273, December 1972.
[312] Charles M. Rader. Number theoretic convolution. In IEEE
Signal Processing Workshop, Arden House, Harriman, NY,
January 1972.
[313] Charles M. Rader and N. M. Brenner. A new principle for
fast fourier transformation. IEEE Trans. Acoust., Speech,
Signal Processing, 24:264–265, 1976.
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
336
BIBLIOGRAPHY
[314] K. R. Rao and P. Yip.
Discrete Cosine Transform: Al-
gorithms, Advantages, Applications. Academic Press, San
Diego, CA, 1990.
[315] J. M. Rius and R. De Porrata-D[U+FFFD]. New fft bit-
reversal algorithm. IEEE Transactions on Signal Process-
ing, 43(4):9918211;994, April 1995.
[316] Christian Roche. A split8211;radix partial input/output fast
fourier transform algorithm. IEEE Transactions on Signal
Processing, 40(5):12738211;1276, May 1992.
[317] D. Rockmore. Some applications of generalized fft’s. In
Proceedings of DIMACS Workshop in Groups and Compu-
tation, volume 28, page 3298211;370, 1995.
[318] J. J. Rodr[U+FFFD]ez. An improved fft digit8211;reversal
algorithm. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 37(8):12988211;1300, August 1989.
[319] J.H. Rothweiler. Implementation of the in-order prime fac-
tor fft algorithm.
IEEE TRANS. ON ASSP, 30:105–107,
February 1982.
[320] J.H. Rothweiler. Implementation of the in-order prime fac-
tor fft algorithm.
IEEE TRANS. ON ASSP, 30:105–107,
February 1982.
[321] Petr Rsel. Timing of some bit reversal algorithms. Signal
Processing, 18(4):4258211;433, December 1989.
[322] Ali Saidi. Decimation-in-time-frequency fft algorithm. In
Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Pro-
cessing, volume 3, page 4538211;456, 1994.
[323] Ali Saidi.
Decimation-in-time-frequency fft algorithm.
In Proceedings of the IEEE International Conference on
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
BIBLIOGRAPHY
337
Acoustics, Speech, and Signal Processing, volume 3, page
III:4538211;456, IEEE ICASSP-94, Adelaide, Australia,
April 198211;22 1994.
[324] Ali Saidi.
Decimation-in-time-frequency fft algorithm,
1996. manuscript.
[325] G. Sande. Fast fourier transform - a gobally complex algo-
rithm with locally real implementations. Proc. 4th Annual
Princeton Conference on Information Sciences and Systems,
pages 136–142, March 1970.
[326] James C. Schatzman. Accuracy of the discrete fourier trans-
form and the fast fourier transform. SIAM J. Scientific Com-
puting, 17(5):11508211;1166, 1996.
[327] James C. Schatzman. Index mapping for the fast fourier
transform.
IEEE Transactions on Signal Processing,
44(3):7178211;719, March 1996.
[328] Manfred R. Schroeder. Number Theory in Science and Com-
minication. Springer8211;Verlag, Berlin, second edition,
1984, 1986.
[329] I. W. Selesnick and C. S. Burrus. Automating the design of
prime length fft programs. In Proceedings of the IEEE In-
ternational Symposium on Circuits and Systems, volume 1,
page 1338211;136, ISCAS-92, San Diego, CA, May 1992.
[330] I. W. Selesnick and C. S. Burrus. Automating the design of
prime length fft programs. In Proceedings of the IEEE In-
ternational Symposium on Circuits and Systems, volume 1,
page 1338211;136, ISCAS-92, San Diego, CA, May 1992.
[331] I. W. Selesnick and C. S. Burrus. Multidimensional map-
ping techniques for convolution.
In Proceedings of the
Available for free at Connexions
<http://cnx.org/content/col10683/1.5>
338
BIBLIOGRAPHY