Robust Adaptive Control by Petros A. Ioannou, Jing Sun - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

θk+1

if ¯

θk+1 ∈ S

θk+1 =

¯

θk+1 M

|¯

θ

0

if ¯

θk+1 ∈ S

k+1 |

and θ 0 ∈ S. As in the continuous-time case, it can be shown that the hybrid

adaptive law with projection has the same properties as those of (4.6.4). In

addition it guarantees that θk ∈ S, ∀k ≥ 0. The details of this analysis are

left as an exercise for the reader.

4.7

Summary of Adaptive Laws

In this section, we present tables with the adaptive laws developed in the

previous sections together with their properties.

4.8

Parameter Convergence Proofs

In this section, we present the proofs of the theorems and corollaries of the previous

sections that deal with parameter convergence. These proofs are useful for the

reader who is interested in studying the behavior and convergence properties of the

parameter estimates. They can be omitted by the reader whose interest is mainly on

adaptive control where parameter convergence is not part of the control objective.

4.8.1

Useful Lemmas

The following two lemmas are used in the proofs of corollaries and theorems pre-

sented in this sections.

4.8. PARAMETER CONVERGENCE PROOFS

221

Table 4.1 Adaptive law based on SPR-Lyapunov design approach

Parametric model

z = W ( s) θ∗ ψ

Parametric model

z = W ( s) L( s) θ∗ φ, φ = L− 1( s) ψ

rewritten

Estimation model

ˆ

z = W ( s) L( s) θ φ

Normalized

= z − ˆ

z − W ( s) L( s) n 2 s

estimation error

Adaptive law

˙ θ = Γ φ

Design variables

L− 1( s) proper and stable; W ( s) L( s) proper and

SPR; m 2 = 1 + n 2 s and ns chosen so that φ ∈ L

m

(e. g., n 2 s = αφ φ for some α > 0)

Properties

(i) , θ ∈ L∞; (ii) , ns, ˙ θ ∈ L 2

Lemma 4.8.1 (Uniform Complete Observability (UCO) with Output In-

jection). Assume that there exists constants ν > 0 , kν ≥ 0 such that for all t 0 0 , K( t) ∈ Rn×l satisfies the inequality

t 0+ ν

|K( τ ) | 2 dτ ≤ kν

(4.8.1)

t 0

∀t ≥ 0 and some constants k 0 , ν > 0 . Then ( C, A) , where C ∈ Rn×l, A ∈ Rn×n, is a UCO pair if and only if ( C, A + KC ) is a UCO pair.

Proof We show that if there exist positive constants β 1 , β 2 > 0 such that the

observability grammian N ( t 0 , t 0 + ν) of the system ( C, A) satisfies

β 1 I ≤ N( t 0 , t 0 + ν) ≤ β 2 I

(4.8.2)

then the observability grammian N 1( t 0 , t 0 + ν) of ( C, A + KC ) satisfies

β 1 I ≤ N 1( t 0 , t 0 + ν) ≤ β 2 I

(4.8.3)

for some constant β 1 , β 2 > 0. From the definition of the observability grammian

matrix, (4.8.3) is equivalent to

222

CHAPTER 4. ON-LINE PARAMETER ESTIMATION

Table 4.2 Gradient algorithms

Parametric model

z = θ∗ φ

Estimation model

ˆ

z = θ φ

Normalized

z − ˆ

z

=

estimation error

m 2

A. Based on instantaneous cost

Adaptive law

˙ θ = Γ φ

Design variables

m 2 = 1 + n 2 s, n 2 s = αφ φ, α > 0, Γ = Γ > 0

Properties

(i) , ns, θ, ˙ θ ∈ L∞; (ii) , ns, ˙ θ ∈ L 2

B. Based on the integral cost

Adaptive law

˙ θ = Γ( + Q)

˙

R = −βR + φφ , R(0) = 0

m 2

˙

Q = −βQ − zφ , Q(0) = 0

m 2

Design variables

m 2 = 1+ n 2 s, ns chosen so that φ/m ∈ L∞ (e.

g., n 2 s = αφ φ, α > 0 ); β > 0, Γ = Γ > 0

Properties

(i) , ns, θ, ˙ θ, R, Q ∈ L∞; (ii) , ns, ˙ θ ∈ L 2 ;

(iii) lim

˙

t→∞ θ = 0

t 0+ ν

β 1 |x 1( t 0) | 2

|C ( t) x 1( t) | 2 dt ≤ β 2 |x 1( t 0) | 2

(4.8.4)

t 0

where x 1 is the state of the system

˙ x 1 = ( A + KC ) x 1

(4.8.5)

y 1 = C x 1

which is obtained, using output injection, from the system

Table 4.3 Least-squares algorithms

4.8. PARAMETER CONVERGENCE PROOFS

223

Parametric model

z = θ∗ φ

Estimation model

ˆ

z = θ φ

Normalized

= ( z − ˆ

z) /m 2

estimation error

A. Pure least-squares

Adaptive law

˙ θ = P φ

˙

P = −P φφ P,

P (0) = P

m 2

0

Design variables

P 0 = P 0 > 0; m 2 = 1 + n 2 s ns chosen so that

φ/m ∈ L∞ (e.g., n 2 s = αφ φ, α > 0 or n 2 s =

φ P φ)

(i) , ns, θ, ˙ θ, P ∈ L∞; (ii) , ns, ˙ θ ∈ L 2; (iii)

Properties

lim t→∞ θ( t) = ¯

θ

B. Least-squares with covariance resetting

˙ θ = P φ

Adaptive law

˙

P = −P φφ P,

P ( t+

m 2

r ) = P 0 = ρ 0 I ,

where tr is the time for which λmin( P ) ≤ ρ 1

Design variables

ρ 0 > ρ 1 > 0; m 2 = 1 + n 2 s, ns chosen so that

φ/m ∈ L∞ (e.g., n 2 s = αφ φ, α > 0 )

Properties

(i) , ns, θ, ˙ θ, P ∈ L∞; (ii) , ns, ˙ θ ∈ L 2

C. Least-squares with forgetting factor

Adaptive law

˙ θ = P φ

˙

βP − P φφ P, if P ( t) ≤ R

P =

m 2

0

0

otherwise

P (0) = P 0

Design variables

m 2 = 1 + n 2 s, n 2 s = αφ φ or φ P φ; β > 0 , R 0 > 0 scalars; P 0 = P 0 > 0 , P 0 ≤ R 0

Properties

(i) , ns, θ, ˙ θ, P ∈ L∞; (ii) , ns, ˙ θ ∈ L 2

224

CHAPTER 4. ON-LINE PARAMETER ESTIMATION

Table 4.4 Adaptive laws for the bilinear model

Parametric model : z = W ( s) ρ∗( θ∗ ψ + z 0)

A. SPR-Lyapunov design: sign of ρ∗ known

z = W ( s) L( s) ρ∗( θ∗ φ + z

Parametric model

1)

rewritten

φ = L− 1( s) ψ, z 1 = L− 1( s) z 0

Estimation model

ˆ

z = W ( s) L( s) ρ( θ φ + z 1)

Normalized

= z − ˆ

z − W ( s) L( s) n 2

estimation error

s

˙ θ = Γ φ sgn( ρ∗)

Adaptive law

˙ ρ = γ ξ, ξ = θ φ + z 1

Design variables

L− 1( s) proper and stable; W ( s) L( s) proper and

SPR; m 2 = 1 + n 2 s; ns chosen so that φ , z 1 ∈ L

m m

(e.g. n 2 s = α( φ φ+ z 21), α > 0); Γ = Γ > 0 , γ > 0

Properties

(i) , θ, ρ ∈ L∞; (ii) , ns, ˙ θ, ˙ ρ ∈ L 2

B. Gradient algorithm: sign( ρ∗) known

Parametric model

z = ρ∗( θ∗ φ + z 1)

rewritten

φ = W ( s) ψ, z 1 = W ( s) z 0

Estimation model

ˆ

z = ρ( θ φ + z 1)

Normalized

z − ˆ

z

=

estimation error

m 2

˙ θ = Γ φ sgn( ρ∗)

Adaptive law

˙ ρ = γ ξ, ξ = θ φ + z 1

Design variables

m 2 = 1 + n 2 s; ns chosen so that φ , z 1 ∈ L

m m

(e.g.,

n 2 s = φ φ + z 21); Γ = Γ > 0 , γ > 0

Properties

(i) , ns, θ, ρ, ˙ θ, ˙ ρ ∈ L∞; (ii) , ns, ˙ θ, ˙ ρ ∈ L 2

˙ x = Ax

(4.8.6)

y = C x

Form (4.8.5) and (4.8.6), it follows that e = x 1 − x satisfies

˙ e = Ae + KC x 1

4.8. PARAMETER CONVERGENCE PROOFS

225

Table 4.4 (Continued)

C. Gradient algorithm with projection

Sign ( ρ∗) and lower bound 0 < ρ 0 ≤ |ρ∗| known

z = ¯

θ∗ ¯

φ

Parametric model

¯

θ∗ = [¯

θ∗ 1 , ¯ θ∗ 2 ] , ¯ θ∗ 1 = ρ∗, ¯ θ∗ 2 = ρ∗θ∗

rewritten

¯

φ = [ z 1 , φ ]

Estimation model

ˆ

z = ¯

θ ¯

φ

z − ˆ

z

Normalized

= m 2

estimation error

γ 1 z 1

if ¯

θ 1sgn( ρ∗) > ρ 0 or

˙¯ θ 1 =

if ¯

θ

1sgn( ρ∗) = ρ 0 and −γ 1 z 1 sgn( ρ∗) 0

0

otherwise

˙¯

Adaptive law

θ 2 = Γ2 φ

ρ = ¯

θ 1 , θ = ¯ θ 2

¯

θ 1

¯

m 2 = 1+ n 2

φ

s; ns chosen so that

∈ L

m

(e.g., n 2

s =

Design variables

α ¯

φ ¯

φ, α > 0 ); γ 1 > 0; ¯

θ 1(0) satisfies |¯

θ 1(0) | ≥ ρ 0;

Γ2 = Γ2 > 0 , γ > 0

Properties

(i) , ns, θ, ρ, ˙ θ, ˙ ρ ∈ L∞; (ii) , ns, ˙ θ, ˙ ρ ∈ L 2

D. Gradient algorithm without projection

Unknown sign ( ρ∗)

Parametric model

z = ρ∗( θ∗ φ + z 1)

ˆ

z = N ( x) ρ( θ φ + z 1)

Estimation model

N ( x) = x 2 cos x

x = w + ρ 2 , ˙

w = 2 m 2 , w(0) = 0

2 γ

z − ˆ

z

Normalized

=

estimation error

m 2

˙ θ = N( xφ

Adaptive law

˙ ρ = N ( x) γ ξ, ξ = θ φ + z 1

Design variables

m 2 = 1 + n 2 s; ns chosen so that φ , z 1 ∈ L

m m

; (e.g.,

n 2 s = φ φ + z 21); γ > 0 , Γ = Γ > 0

Properties

(i) , ns, θ, ρ, ˙ θ, ˙ ρ, x, w ∈ L∞; (ii) , ns, ˙ θ, ˙ ρ ∈ L 2

226

CHAPTER 4. ON-LINE PARAMETER ESTIMATION

Table 4.5. Hybrid adaptive law

Parametric model

z = θ∗ φ

Estimation model

ˆ

z = θk φ, t ∈ [ tk, tk+1)

Normalized

estimation error

z − ˆ

z

= m 2

Adaptive law

θk+1 = θk tk+1

t

( τ ) φ( τ ) dτ, k = 0 , 1 , 2 , . . . ,

k

Design variables

Sampling period Ts = tk+1 − tk > 0 , tk = kTs;

m 2 = 1 + n 2 s and ns chosen so that |φ|/m ≤ 1

(e.g., n 2 s = αφ φ, α ≥ 1 )

Γ = Γ > 0

2 − Tsλmax(Γ) > γ for some constant γ > 0

Properties

(i) θk ∈ l∞, , ns ∈ L∞

(ii) |θk+1 − θk| ∈ l 2 ; , ns ∈ L 2

Consider the trajectories x( t) and x 1( t) with the same initial conditions. We

have

t

e( t) =

Φ( t, τ ) K( τ ) C ( τ ) x 1( τ)

(4.8.7)

t 0

where Φ is the state transition matrix of (4.8.6). Defining

KC x

¯

x

1 /|KC

x 1 | if |C x 1 | = 0

1 =

K/|K|

if |C x 1 | = 0

we obtain, using the Schwartz inequality, that

t

2

|C ( t) e( t) | 2

C ( t)Φ(