Robust Adaptive Control by Petros A. Ioannou, Jing Sun - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

t

1

P ( t)

1 α

¯

mI,

∀t > T

T

0 T 0

0

(4.8.41)

0

Because P ( t) 0 for all t ≥ 0 and the right-hand side of (4.8.41) goes to zero as

t → ∞, we can conclude that P ( t) 0 as t → ∞. Hence, ˜

θ( t) = P ( t) P − 1 ˜

0

θ(0) 0

as t → ∞.

4.8.6

Proof of Corollary 4.3.2

Let us denote Γ = P − 1( t), then from (4.3.78) we have

˙

φφ

Γ = −βΓ +

,

Γ(0) = Γ (0) = Γ

m 2

0 = P − 1

0

or

t

Γ( t) = e−βtΓ0 +

e−β( t−τ) φ( τ ) φ ( τ )

0

m 2

Using the condition that φ( t) is PE and m ∈ L∞, we can show that for all t ≥ T 0

t

Γ( t)

e−β( t−τ) φφ dτ

0

m 2

t

t−T 0

=

e−β( t−τ) φ( τ ) φ ( τ ) +

e−β( t−τ) φ( τ ) φ ( τ )

t−T

m 2

m 2

0

0

α

≥ e−βT

0 T 0

0

I

(4.8.42)

¯

m

where ¯

m = sup t m 2( t). For t ≤ T 0, we have

Γ( t) ≥ e−βtΓ0 ≥ e−βT 0Γ0 ≥ λmin(Γ0) e−βT 0 I

(4.8.43)

242

CHAPTER 4. ON-LINE PARAMETER ESTIMATION

Conditions (4.8.42), (4.8.43) imply that

Γ( t) ≥ γ 1 I

(4.8.44)

for all t ≥ 0 where γ 1 = min { α 0 T 0 , λ

β

min(Γ0) }e−βT 0 .

1

On the other hand, using the boundedness of φ, we can establish that for some

constant β 2 > 0

t

Γ( t) Γ0 + β 2

e−β( t−τ) dτ I

0

β

≤ λ

2

max(Γ0) I +

I ≤ γ

β

2 I

(4.8.45)

where γ 2 = λmax(Γ0) + β 2 > 0.

β

Combining (4.8.44) and (4.8.45), we conclude

γ 1 I ≤ Γ( t) ≤ γ 2 I

for some γ 1 > 0 , γ 2 > 0. Therefore,

γ− 1

2 I ≤ P ( t) ≤ γ− 1

1 I

and consequently P ( t) , P − 1( t) ∈ L∞. Because P ( t) , P − 1( t) ∈ L∞, the exponential convergence of θ to θ∗ can be proved using exactly the same procedure and arguments as in the proof of Theorem 4.3.2.

4.8.7

Proof of Theorem 4.5.1(iii)

Consider the following differential equations which describe the behavior of the

adaptive law (see (4.5.6) and (4.5.7)):

˙ e = Ace + Bc( −ρ∗ ˜

θ φ − ˜

ρξ − n 2 s)

˙˜ θ = Γ φ sgn( ρ∗)

(4.8.46)

˙ ρ = γ ξ

= Cc e

Because ξ, ρ ∈ L∞ and ξ ∈ L 2, we can treat ξ, ρ as external input functions and

write (4.8.46) as

˙ xa = Aaxa + Ba( ˜

ρξ)

(4.8.47)

where

e

A

B

x

c − n 2

sBcCc

−ρ∗Bcφ

c

a =

˜

,

A

,

B

θ

a =

Γsgn( ρ∗) φC

a =

c

0

0

4.8. PARAMETER CONVERGENCE PROOFS

243

In proving Corollary 4.3.1, we have shown that when φ is PE and φ, ˙ φ ∈ L∞, the

system ˙ x = Aax is e.s. Therefore, the state transition matrix Φ a( t, t 0) of (4.8.47)

satisfies

Φ a( t, 0) ≤ α 0 e−γ 0 t

(4.8.48)

for some constants α 0 , γ 0 > 0, which together with −Ba ˜

ρξ ∈ L 2 imply that xa( t)

0 as t → ∞.

4.8.8

Proof of Theorem 4.6.1 (iii)

From the proof of Theorem 4.6.1 (i) to (ii), we have the inequality (see (4.6.9))

tk+1

V ( k + 1) − V ( k) ≤ −(2 − T

2

sλm)

( τ ) m 2( τ )

(4.8.49)

tk

Using inequality (4.8.49) consecutively, we have

tk+ n

V ( k + n) − V ( k) ≤ −(2 − T

2

sλm)

( τ ) m 2( τ )

tk

n− 1

tk+ i+1

= (2 − T

2

sλm)

( τ ) m 2( τ )

(4.8.50)

i=0

tk+ i

for any integer n. We now write

2

t

˜

k+ i+1

tk+ i+1

θ

φ( τ )

2

k+ i

( τ ) m 2( τ )

=

t

m 2( τ )

k+ i

tk+ i

2

t

˜

k+ i+1

θ φ( τ ) + (˜

θ

k

k+ i − ˜

θk) φ( τ)

=

t

m 2( τ )

k+ i

Using the inequality ( x + y)2 1 x 2 − y 2, we write

2

2

2

t

˜

k+ i+1

tk+ i+1 θ φ( τ )

tk+ i+1 (˜

θk+ i − ˜

θk) φ( τ)

2

1

k

( τ ) m 2( τ ) dτ ≥

dτ −

t

2

m 2( τ )

m 2( τ )

k+ i

tk+ i

tk+ i

(4.8.51)

Because φ( τ ) /m( τ ) is bounded, we denote c = sup ( τ) | 2 and have m 2( τ )

2

tk+ i+1

θk+ i − ˜

θk) φ( τ)

dτ ≤ cTs|˜

θk+ i − ˜

θk| 2

t

m 2( τ )

k+ i

From the hybrid adaptive algorithm, we have

tk+ i

˜

θk+ i − ˜

θk =

( τ ) φ( τ ) dτ, i = 1 , 2 , . . . , n

tk

244

CHAPTER 4. ON-LINE PARAMETER ESTIMATION

therefore, using the Schwartz inequality and the boundedness of ( t) |/m( t),

t

2

2

k+ i

tk+ i

( τ ) |

|˜

θk+ i − ˜

θk| 2

| ( τ ) ||φ( τ ) |dτ

=

| ( τ ) |m( τ )

t

m( τ )

k

tk

tk+ i

tk+ i |φ( τ) | 2

2( τ) m 2( τ)

t

m 2( τ )

k

tk

tk+ i

≤ ciT

2

s

( τ ) m 2( τ )

tk

tk+ n

≤ ciT

2

s

( τ ) m 2( τ )

(4.8.52)

tk

Using the expression (4.8.52) in (4.8.51), we have

2

t

˜

k+ i+1

tk+ i+1

θ φ( τ )

tk+ n

2

1

k

( τ ) m 2( τ ) dτ ≥

dτ − c 2 iT 2

2

s

( τ ) m 2( τ )

t

2

m 2( τ )

k+ i

tk+ i

tk

which leads to

t

n− 1

k+ n

tk+ i+1

2( τ) m 2( τ) =

2( τ) m 2( τ)

tk

i=0

tk+ i

2

n− 1

˜

 1

tk+ i+1

θ φ( τ )

k

tk+ n

dτ − c 2 iT 2

2( τ) m 2( τ)

2

m 2( τ )

s

i=0

tk+ i

tk

1

n− 1

t

n− 1

k+ i+1 φ( τ ) φ ( τ )

tk+ n

˜

θ

˜

θ

c 2 iT 2

2( τ) m 2( τ)

2 k

m 2( τ )

k −

s

i=0

tk+ i

i=0

tk

tk+ n φ( τ) φ ( τ)

n( n − 1)

tk+ n

=

˜

θ

2

k

˜

θk −

c 2 T 2

s

( τ ) m 2( τ )

t

2 m 2( τ )

2

k

tk

or equivalently

tk+ n

tk+ n

2

1

φ( τ ) φ ( τ )

( τ ) m 2( τ ) dτ ≥

˜

θk

˜

θk (4.8.53)

t

2(1 + n( n − 1) c 2 T 2

m 2( τ )

k

s / 2)

tk

Because φ is PE and 1 ≤ m < ∞, there exist constants α 1 , α 2 and T 0 > 0 such that t+ T 0 φ( τ) φ ( τ)

α 2 I ≥

dτ ≥ α 1 I

t

m 2

for any t. Therefore, for any integer k, n where n satisfies nTs ≥ T 0, we have

tk+ n

˜

φ( τ ) φ ( τ )

V ( k)

θ

˜ ˜

k

˜

θk ≥ α 1 θk θk ≥

α 1

(4.8.54)

t

m 2

λ

k

m

4.9. PROBLEMS

245

Using (4.8.53), (4.8.54) in (4.8.50), we obtain the following inequality:

(2 − T

V ( k + n) − V ( k) ≤ −

sλm) α 1

V ( k)

(4.8.55)

λm(2 + n( n − 1) c 2 T 2 s)

hold for any integer n with n ≥ T 0 /Ts. Condition (4.8.55) is equivalent to

V ( k + n) ≤ γV ( k)

with

(2 − T

γ = 1

sλm) α 1

< 1

λm(2 + n( n − 1) c 2 T 2 s)

Therefore,

V (