Robust Adaptive Control by Petros A. Ioannou, Jing Sun - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

0

can use the boundedness of the signals to show that ˙ e 1 ∈ L∞ which together with

e 1 ∈ L 2 imply that e 1( t) 0 as t → ∞.

6.8. STABILITY PROOFS OF MRAC SCHEMES

423

Step 5. Establish parameter convergence. First, we show that φ, φp are PE if

r is sufficiently rich of order 2 n. From the definition of φ, we can write

( sI − F ) 1 gup

 ( sI − F ) 1 gy

φ = H( s) 

p

y

p

r

where H( s) = Wm( s) if the adaptive law of Table 6.5(B) is used and H( s) = L− 1( s) if that of Table 6.5(A) is used. Using up = G− 1

p ( s) yp and yp = Wm( s) r + e 1, we

have

φ = φm + ¯

φ

where

( sI − F ) 1 gG− 1

p ( s) Wm( s)

( sI − F ) 1 gG− 1

p ( s)

( sI − F ) 1 gW

( sI − F ) 1 g

φ

m( s)

m = H ( s)

W

r, ¯

φ = H( s)

e 1

m( s)

1

1

0

Because e 1 ∈ L 2, it follows from the properties of the PE signals that φ is PE if

and only if φm is PE. In the proof of Theorem 6.4.1 and 6.4.2, we have proved that

( sI − F ) 1 gG− 1

p ( s) Wm( s)

( sI − F ) 1 gW

φ

m( s)

0 = 

W

r

m( s)

1

is PE provided r is sufficiently rich of order 2 n. Because H( s) is stable and minimum

phase and ˙ φ 0 ∈ L∞ owing to ˙ r ∈ L∞, it follows from Lemma 4.8.3 (iv) that

φm = H( s) φ 0 is PE.

From the definition of φp, we have

( sI −F ) 1 gG− 1

p ( s) Wm( s)

Wm( s)( sI −F ) 1 gG− 1

p ( s)

( sI − F ) 1 gW

W

φ

m( s)

m( s)( sI − F ) 1 g

p = Wm( s)

W

r + 

e 1

m( s)

Wm( s)

1

1

Because φp has the same form as φ, the PE property of φp follows by using the

same arguments.

We establish the convergence of the parameter error and tracking error to zero

as follows: First, let us consider the adaptive laws of Table 6.5. For the adaptive

law based on the SPR-Lyapunov approach (Table 6.5(A)), we have

= WmL( ρ∗ ˜

θ φ − ˜

ρξ − n 2 s)

˙˜ θ = Γ φ sgn( kp/km)

(6.8.20)

424

CHAPTER 6. MODEL REFERENCE ADAPTIVE CONTROL

where Cc ( sI − Ac) 1 Bc = Wm( s) L( s) is SPR. The stability properties of (6.8.20) are established by Theorem 4.5.1 in Chapter 4. According to Theorem 4.5.1 (iii),

˜

θ( t) 0 as t → ∞ provided φ, ˙ φ ∈ L∞, φ is PE and ξ ∈ L 2. Because ξ =

Wc( Wbω ) ˙ θ and ω ∈ L∞, ˙ θ ∈ L 2, we have ξ ∈ L 2. From up, yp ∈ L∞ and the expression for φ, we can establish that φ, ˙ φ ∈ L∞. Because φ is shown to be PE,

the convergence of ˜

θ( t) to zero follows. From ˜

θ( t) 0 as t → ∞ and ˜

ρξ, n 2 s ∈ L 2

and the stability of Ac, we have that e( t) 0 as t → ∞. In fact, the convergence

of e( t) to zero follows from the properties of the Lyapunov-like function used to

analyze (6.8.20) in Theorem 4.5.1 without requiring φ to be PE.

The proof for the adaptive law of Table 6.5(B) follows from the above arguments

by replacing L− 1( s) with Wm( s) and using the results of Theorem 4.5.2 (iii).

For the adaptive laws of Table 6.6, we have established in Chapter 4 that without

projection, ˜

θ( t) 0 as t → ∞ exponentially fast provided φp is PE. Since projection

can only make the derivative ˙

V of the Lyapunov-like function V , used to analyze the

stability properties of the adaptive law, more negative the exponential convergence

of ˜

θ to zero can be established by following exactly the same steps as in the case of

no projection.

6.8.3

Proof of Theorem 6.6.2: Indirect MRAC

We follow the same steps as in proving stability for the direct MRAC scheme:

Step 1. Express yp, up in terms of ˜

θ ω. Because the control law for the indirect

MRAC is the same as the direct MRAC scheme, equations (6.8.2), (6.8.3) still hold,

i.e., we have

1

1

y

˜

˜

p = Wm( s)

r +

θ ω , u

θ ω

c∗

p = G− 1

p ( s) Wm( s)

r +

0

c∗ 0

As in the direct case, we define the fictitious normalizing signal

m 2

2

2

f = 1 + up

+ yp

where

·

denotes the L 2 δ-norm for some δ > 0. Using the same arguments as in

the proof of Theorem 6.5.1, we have

m 2 f ≤ c + c ˜ θ ω 2

Step 2. We upper bound ˜

θ ω with terms that are guaranteed by the adaptive

laws to have L 2 gains. From (6.6.25), we have

1

θ

ˆ¯

1 αn− 2( s) = Λ( s)

Z

ˆ

p( s, t) · ˆ

Q( s, t)

(6.8.21)

kp

6.8. STABILITY PROOFS OF MRAC SCHEMES

425

1

θ 2 αn− 2( s) + θ 3Λ( s) =

[ ˆ

Q( s, t) · ˆ

R

ˆ

p( s, t) Λ0( s) Rm( s)]

(6.8.22)

kp

Consider the above polynomial equations as operator equations. We apply (6.8.21)

to the signal Wm( s) u

y

Λ( s)

p, and (6.8.22) to Wm( s)

Λ( s)

p to obtain

1

W

θ

ˆ¯

m( s)

1 Wm( s) ω 1

= Wm( s) up −

Z

u

ˆ

p( s, t) · ˆ

Q( s, t)

p

k

Λ( s)

p

1

W

θ

m( s)

2 Wm( s) ω 2 + θ 3 Wm( s) yp

=

[ ˆ

Q( s, t) · ˆ

R

y

ˆ

p( s, t) Λ0( s) Rm( s)]

p

k

Λ( s)

p

Combining these two equations, we have

1

W

θ

ˆ¯

m( s)

0 Wm( s) ω 0

= Wm( s) up −

Z

u

ˆ

p( s, t) · ˆ

Q( s, t)

p

k

Λ( s)

p

1

W

+

[ ˆ

Q( s, t) · ˆ

R

m( s) y

ˆ

p( s, t) Λ0( s) Rm( s)]

p

(6.8.23)

k

Λ( s)

p

where θ 0 = [ θ 1 , θ 2 , θ 3] , ω 0 = [ ω 1 , ω 2 , yp] . Repeating the same algebraic manipulation, but replacing θ, θp by θ∗, θ∗p in the polynomial equations, we have

¯

Z

W

θ∗

p( s) Q( s)

m( s)

0 Wm( s) ω 0

= Wm( s) up −

u

k

p

p

Λ( s)

Q( s) R

W

+

p( s) Λ0( s) Rm( s)

m( s) y

k

p

(6.8.24)

p

Λ( s)

where Q( s) is the quotient of Λ0( s) Rm( s) /Rp( s) whose order is n∗ − 1 and n∗ is the relative degree of Gp( s). Subtracting (6.8.24) from (6.8.23), we have

˜

1

W

1

W

θ

ˆ¯

m( s)

ˆ

m( s)

0 Wm( s) ω 0

=

Z

u

Q( s, t) · ˆ

R

y

ˆ

p( s, t) · ˆ

Q( s, t)

p +

p( s, t)

p

k

Λ( s)

ˆ

Λ( s)

p

kp

1 Λ

1 Λ

0( s) Rm( s) W

0( s) Rm( s) W

ˆ

m( s) yp −

m( s) yp

k

Λ( s)

k

Λ( s)

p

p

¯

Z

R

+

p( s) Q( s) W

p( s) Q( s) W

k

m( s) up −

m( s) yp

pΛ( s)

kpΛ( s)

= ef − e 1 f + e 2 f

(6.8.25)

where ˜

θ 0 = θ 0 − θ∗ 0 and

1

W

1

W

e

ˆ¯

m( s)

ˆ

m( s)

f =

Z

u

Q( s, t) · ˆ

R

y

ˆ

p( s, t) · ˆ

Q( s, t)

p +

p( s, t)

p

k

Λ( s)

ˆ

Λ( s)

p

kp

426

CHAPTER 6. MODEL REFERENCE ADAPTIVE CONTROL

e 1 f , e 2 f are defined as the terms in the second and third brackets of (6.8.25), re-

spectively. Because c 0 = km , c∗

, Λ( s) = Λ

ˆ

k

0 = km

k

0( s) Zm( s) and ¯

Zp( s) up = Rp( s) yp,

p

p

we have

e 1 f = ( c 0 − c∗ 0) yp, e 2 f = 0

(6.8.26)

Using (6.8.26) in (6.8.25) and defining ωp = [ ω 0 , W − 1

m ( s) yp]

we can write

˜

θ Wm( s) ωp = ef

(6.8.27)

Because ˜

θ ω = c∗ 0 ˜

θ ω

c

p, proved in Section 6.8.2 (see equation (6.8.14) ), we use

0

Swapping Lemma A.2 to write

˜

c∗

θ ω = 0 F

c

1( s, α 0)( ˙˜

θ ωp + ˜

θ ˙ ωp) + F ( s, α 0)˜

θ ωp

(6.8.28)

0

where F ( s, α 0) and F 1( s, α 0) are as defined in Section 6.8.2 and satisfy

c

F 1( s, α 0) ∞δ ≤

,

F ( s, α

α

0) W − 1

m ( s) ∞δ ≤ cαn∗

0

0

for any α 0 > δ > 0. Applying Swapping Lemma A.1 to Wm( s

θ ωp and using

(6.8.27), we obtain

˜

θ ωp = W − 1

m (