The Moon: A Popular Treatise by Garrett Putman Serviss - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

 

INTRODUCTION

ONE serene evening, when the full moon, rising slowly above the tree tops, began to spread over the landscape that peculiar radiance which, by half revealing and half concealing, by softening all outlines, and by imparting a certain mystery to the most familiar objects, fascinates at once the eye and the imagination, I was walking with a friend, a lady of charming intelligence, in a private park adjoining an old mansion in one of the most beautiful districts of central New York. For a long time we both remained silent, admiring the scene before us, so different in every aspect from its appearance in the glare of daylight—each occupied with the thoughts that such a spectacle suggests. Suddenly my friend turned to me and said:

“Tell me—for, like so many thousand others, I am virtually ignorant of these mysteries of the sky—tell me, what is that moon? What do astronomers really know about it?”

“But,” I replied, “you certainly exaggerate your ignorance. You must have read what so many books have told about the moon.”

“Not a word,” was the reply, “or at least, what I have read has made little impression upon my mind. I read few books of science; generally they repel me. But face to face with that marvelous moon, I find it irresistible, and my desire for knowledge concerning it becomes intense. I remember something about eclipses, and something about tides, with which, I believe, the moon is concerned. I recall the statement that the moon has no atmosphere, but does possess great mountains and volcanoes. Yet these things are so jumbled in my memory with technical statements which failed to interest me, that really my ignorance remains profound. But I have heard that many surprising discoveries have been made lately concerning the moon, and that astronomers have succeeded in taking wonderful photographs of scenes in the lunar world. I have, indeed, seen copies of some of these photographs, but beyond awaking curiosity by their bizarre effects of light and shadow, they impressed me little, for lack, I suppose, of information as to their meaning. I beg you, then, to tell me what is really known about the world of the moon. There it is; I see it; I experience the delightful impressions which its light produces—but, after all, what is it, and what should we behold if we could go there? I once read Jules Verne’s romance of a trip to the moon, but unfortunately his adventurers never really got there, and I finished the story with a keen sense of disappointment because, in the end, he told so very little about the moon itself. As for the professional books of the astronomers they are useless to me. Then, please tell me that which, at this moment, with that wonderful orb actually in sight, I so much desire to know.”

It was not possible to resist an appeal so earnestly urged, but I felt compelled to say: “Since you remember so little about the fundamental facts which generations of astronomers have accumulated concerning our nearest neighbor in the sky, I must, for the sake of completeness, and in order to put you au courant with the more captivating things that will come later, begin at the beginning, and the true beginning is not among the mountains of the moon, but here on the earth. We must start from our own globe—as the moon herself did.”

“What do you mean by that?” my friend asked with a tone of surprise.

“Have you not read, somewhere, in the last ten years, that the moon was actually born from the earth?”

“Yes, now that you mention it, I dimly recall something of the kind, but I took it for an extravagant speculation of some savant who possessed more imagination than solid knowledge.”

“The savant who originally demonstrated the earthly origin of the moon,” I replied, “is not one to be easily led into extravagance by his imagination. It is Prof. George Darwin, the son of the famous author of the ‘Origin of Species.’ I shall not mention his mathematics, which are troublesome, but allow me to tell you, in a word, that his investigations have satisfied astronomers that the earth and the moon once composed a single body. How many million years ago that was we can only guess. The causes of the separation which eventually occurred were the plastic condition of the original body while it was yet hot and molten, its swift axial rotation producing an immense centrifugal force at its equator, and the attraction of the sun raising huge tides which affected its entire mass instead of affecting only the waters of the ocean as the tides do at present. At last there came a time when an enormous portion of the swiftly rotating globe was torn loose. That portion included about one-eightieth of the entire mass of the earth. Some astronomers and geologists think that the ‘wound’ left in the side of the earth by this stupendous excision is yet traceable in the basin of the Pacific Ocean.

“The separation being once effected, the material that had escaped gradually assumed a globular form under the influence of the gravitation of its own particles; and, at the same time, by virtue of a curious reaction of the tidal attractions of the two bodies upon each other, the new-born globe was slowly forced away from its mother earth, becoming, in fact, its satellite. Thus, by a process which certainly does seem extravagantly imaginative, but which, nevertheless, is approved by strict mathematical deductions from known physical facts, the moon is believed to have had her birth.”

“Surely,” said my companion, “my imagination would never have dared to form such a picture, even if it had been capable of so extraordinary a flight.”

“No,” I replied, “nor the imagination of the most learned astronomer. You perceive that in things celestial as in things terrestrial fact is far more strange than fiction. We shall have occasion to refer to some of the consequences of the earthly origin of the moon later on, but just now in order that the knowledge you seek may not be too fragmentary, I must tell you some other, more commonly known, facts about our satellite.”

“Judging by myself I doubt if there are many such facts commonly known.”

“Perhaps you are right, but do not judge too severely the authors of astronomical books. Such books are written primarily for those who wish to study, not for those who desire to be intellectually entertained. But let me get through with my preliminaries, and then, under the guidance of science and photography, we shall try to visit the moon. One of the first questions that naturally arise concerning the objects that we see in the heavens relates to their distance from us. The average, or mean, distance of the moon from the earth is 238,840 miles. For the sake of a round number we usually call it 240,000 miles. But the orbit, or path, of the moon in her monthly journey around the earth, is so far from being a true circle that the distance is variable to the extent of 31,000 miles. Even the form of the moon’s path in space is not constant. Owing to the varying effects of the attraction of the earth and the sun, her elliptical orbit becomes now a little more and now a little less eccentric, the consequence being that the moon’s distance from the earth is continually changing. When she is at her greatest possible distance she is 253,000 miles away, but this distance at certain times, may be reduced to only 221,600 miles. As a result of these changes of distance the moon sometimes appears noticeably larger to our eyes than at other times.

“This leads us next to inquire, ‘What is the actual size of the moon?’ When we know the distance of any body from the eye it is not difficult to determine its size. The diameter of the moon is 2,163 miles. The face of the full moon contains 7,300,000 square miles. It is a little larger than the continent of South America. For a reason that we will speak of presently, the moon always keeps the same side toward us no matter in what part of its orbit it may be. Consequently we always see the same features of her surface and, except through inference, we do not know what exists on the other side of the lunar globe. Of the 7,300,000 square miles of surface which the moon presents to us, about 2,900,000 are occupied by those dark gray patches which you see so plainly spotting her face, and which were once supposed to be seas. The remaining 4,400,000 square miles consist of a very rough, broken country, ridged with gigantic mountains and containing hundreds of enormous craters, and mountain-ringed valleys, which are so vast that one hesitates to call them, what many of them seem evidently to be, extinct volcanoes. A single explosion of a volcano of the dimensions of some of these lunar monsters would shake the whole earth to its center!”

“Please stop a moment,” my friend laughingly interrupted. “So many merciless facts, chasing one at the heels of another, are as bad as the books on your science that I have tried to read. Give my imagination time to overtake you.”

“Very well,” I said, “then relieve your attention a little while by regarding the face of the moon. Do you perceive the portrait of the Moon Maiden there?”

“I believe I do, although I never noticed it before. It is in profile, is it not?”

“Yes, and it occupies all the central portion of the western half of the disk. Take the opera glass and you will see it more clearly.”

“Really, I find her quite charming,” said my companion, after gazing for a minute through the glass. “But what a coquette! Look at the magnificent jewel she wears at her throat, and the parure of pearls that binds her hair!”

“Yes,” I replied, “and no terrestrial coquette ever wore gems so unpurchasable as those with which the Moon Maiden has decked herself. That flaming jewel on her breast is a volcano, with a crater more than fifty miles across! Tycho, astronomers call it. Observe with the glass how broad rays shoot out from it in all directions. They are among the greatest mysteries of lunar scenery. And the string of brilliants in her hair consists of a chain of mountains greater than the Alps—the lunar Apennines. They extend more than 450 miles, and have peaks 20,000 feet high, which gleam like polished facets.”

“Truly,” said my companion, smiling, “these gigantesque facts of yours rather tend to dissipate the romantic impression that I had conceived of the Moon Maiden.”

“No doubt,” I replied. “It is only distance that lends her enchantment. But we must not disregard the facts. Her hair, you perceive, is formed by some of the vast gray plains of which I spoke a few minutes ago. She is like a face in the clouds—approach her, or change the point of view and she disappears or dissolves into something else.

“Now, to return to my preliminaries, upon which I must insist. Knowing the distance and the size of the moon, the next question relates to her motions. You are aware that she travels around the earth about once every month. There are two ways in which we measure the length of time that the moon takes for each revolution. First, regarding the face of the sky as a great dial, with the stars for marks upon it, we notice the time that elapses between two successive conjunctions of the moon with the same star. In the interval she has gone completely around the earth and come back to the starting point. This is called the moon’s sidereal revolution, and it occupies, on the average, twenty-seven days, seven hours, forty-three minutes, twelve seconds. Every twenty-four hours the moon advances among the stars, from west to east, about 13° 11´.

“But there is another, more usual way of measuring the orbital period of the moon. This way is connected with her phases, or changes of shape, from the sickle of the New Moon to the round disk of the Full Moon, and back again to the reversed sickle of the waning moon. It is the time that elapses from one New Moon to the next, or from one Full Moon to the next which now concerns us, and it amounts, on the average, to twenty-nine days, twelve hours, forty-four minutes. This is called the moon’s synodic revolution, and it is equivalent to the ordinary lunar month. It is variable to the amount of about thirteen hours. The reason why the synodic revolution is more than two days longer than the sidereal revolution is because the continual advance of the earth in its orbit around the sun causes the latter to move eastward among the stars, and before the moon’s monthly phases, which depend upon her position with regard to the sun, can recommence, she must overtake the sun.”

“What a hopeless task to try to remember all that!”

“At any rate, if you cannot remember these things my conscience will be clear, for I am simply doing my duty in telling you of them. If you forget, go to the books on astronomy and refresh your memory. But do not persuade yourself that the preliminaries are now finished. You are going to think that my story of the moon resembles Walter Scott’s novels in the length of its introduction; but if, in the end, I can interest you half as much as he finally interests his readers I shall thank the stars for my good fortune.

“The next thing that I must try to explain,” I continued, “is the cause of the moon’s phases, or her continual changes of form. You know that the New Moon is shaped like a thin crescent, and always appears in the west immediately after sundown, with the convex side facing the setting sun. The moon at First Quarter is a half circle and is visible in the southern part of the sky just after sunset. The Full Moon, which we have at present, is a complete round disk, and is always seen directly opposite to the place of the sun, so that she rises when the sun sets. The moon at last quarter is again a half circle, and appears on the meridian in the south at sunrise. The waning moon is like the new moon, crescent-shaped, but the convexity of the bow faces the rising sun, and she is visible only in the morning sky just as dawn begins. To explain the reasons for these changes of shape, which the moon regularly undergoes every month, I must ask you to go indoors and examine a little diagram which I have made.”

“Oh!” said my companion, “it is too bad to abandon this charming spectacle, illuminated by rays so fascinating, for the sake of looking at mathematical lines drawn on paper! But I suppose that this is one of the sacrifices demanded by your inexorable science, and must be made.”

“Yes,” I said, “but if science sometimes demands sacrifices, at least she always rewards them most generously.”

When we had returned to the house I placed upon the drawing-room table this diagram.

img2.jpg

Phases and Rotation of the Moon.

As I spread it out, my companion, after a regretful glance through the open door at the silvery lawn, on which the moon, having cleared the obstructing branches of the bordering trees, was now pouring down the full splendor of her rays, put her elbows on the table to follow my explanation.

“The globe, half bright and half black, in the center,” I said, “represents the earth. The large circle surrounding the earth we will call the moon’s orbit, which she traverses once every month. The smaller globe, also half white and half black, shown in four successive positions in the orbit, is the moon. Suppose the sun to be away off here on the left. It illuminates the earth and the moon only on the side turned toward it. The opposite side of both is buried in night. Now, let us begin with the moon at the point A. She is then between the earth and the sun, the bright side being necessarily toward the sun and the dark side toward the earth. In that position we do not see the moon at all from the earth, unless she happens to come so exactly in a line with the sun as to cover the latter, in which event we have an eclipse of the sun. Now, suppose the moon to move in her orbit toward B. In a little more than seven days she will arrive at B. In the meantime, while moving away from the position of the sun, she begins to present a part of her illuminated hemisphere toward the earth. This part appears in the form of a sickle, or crescent, which grows gradually broader, until, at B, it has grown to a half circle. In other words, when the moon is in the position B we on the earth see one half of her illuminated surface. This phase is called First Quarter. The narrow crescent, which appears as soon as the moon begins to move from A toward B, is the New Moon. As the moon continues on from B toward C, more and more of her illuminated half is visible from the earth, and when she arrives at C, just opposite to the position of the sun, she becomes a Full Moon. We then see, as occurs to-night, the whole of that face of the moon which is presented sunward. The upper half of the diagram shows how the moon moves from the position of Full Moon back again to New Moon, or conjunction with the sun. During this latter part of her course the moon rises later and later every night, until, when she assumes the form of a waning crescent, she is visible only in the morning sky just before sunrise.[1]

“Now, there is another interesting thing shown by this diagram,” I continued—but my companion, who had followed my explanations thus far with flattering attention, here suddenly ran to the door exclaiming:

“For mercy’s sake, what is happening to the moon?”

1.

img3.jpg

The Moon’s Path with Respect to the Sun and the Earth.

It may be well to add to what is said in the text about the orbit of the moon, that, while the moon does perform a revolution around the earth once a month, yet her orbit is drawn out, by the common motion of both earth and moon around the sun, into a long curve, whose radius is continually changing, but which is always concave toward the sun. This is illustrated in the accompanying diagram. Suppose we start with the earth at A. The moon is then between the sun and the earth, or in the phase of New Moon. The earth’s orbit at this point is more curved than the moon’s, and the earth is moving relatively faster than the moon. At B (First Quarter) the earth is directly ahead of the moon. But now the moon’s orbit becomes more curved than the earth’s and it begins to overtake the earth. At C (Full Moon) the moon has come up even with the earth, but on the opposite side from the sun. From that point to D (Last Quarter) the moon gains upon the earth until she is directly ahead of it. Then, from D to E (New Moon, once more) the earth gains until the two bodies are in the same relative positions which they occupied at A. Throughout the entire lunation, however, notwithstanding the changes which the shape of the moon’s orbit undergoes, the latter is constantly concave toward the sun. This shows that the sun’s attraction is really the governing force, and that the attraction of the earth simply serves to vary the form of the moon’s path, and cause it to move in a virtual ellipse with the earth for its focus.

I glanced over her shoulder, and saw a smudgy scallop in the moon’s edge.

“Really,” I said, “I am ashamed of myself. There is an eclipse of the moon to-night, and I had positively forgotten it! What you see is the shadow of the earth, which has the form of a long cone stretching away more than eight hundred thousand miles into space, and whenever our satellite at the time of Full Moon gets nearly in a direct line with the earth and the sun, it passes through that shadow and undergoes an eclipse. That is what is happening at the present moment.”

“And the shadow has a round form because the earth is round, I suppose.”

“Certainly; the shadow of a globe must have a circular outline. But the shadow of the earth, although it finally diminishes to a point, is, at the moon’s distance, still about 5,700 miles in diameter, or more than two and a half times the diameter of the moon. In consequence of the motion of the earth in its orbit around the sun, its shadow constantly moves eastward, like a great pencil of darkness sweeping straight across the heavens, but invisible to us except when the moon, traveling eastward faster than the shadow, overtakes and passes through it. This does not by any means happen at every full moon, because, for a reason which I shall explain presently, the moon usually passes either above or below the shadow of the earth, and thus escapes an eclipse. When an eclipse does occur it lasts a long time because the shadow is moving in the same direction as the moon. The moon must pass entirely through it before the eclipse ends. On this occasion the moon will be in the shadow more than three hours, and during an hour and a half she will be totally immersed. We shall have plenty of time, then, to observe the phenomenon, and after you have satisfied your curiosity a little by watching the slow advance of the shadow movement across the moon, we can return to our diagram and finish its explanation before the eclipse becomes total.”

Accordingly, after having watched the progress of the eclipse for half an hour, during which time the shadow began perceptibly to diminish the moonlight in the park, we returned to the lamplight and the diagram on the table.

“I was saying,” I resumed, “that another interesting thing in addition to the cause of the moon’s changing phases is represented here. You observe that a little cross stands on each of the four circles representing the moon, and that, in every case, the cross is in the center of that side of the moon which faces the earth. In fact the position of the cross upon the moon is fixed and invariable, and it always points toward the earth because the moon makes exactly one rotation on her axis in the course of one revolution around her orbit, or, as it is often called, one lunation. We know that this is so because we always see the same features of the lunar surface, no matter where the moon may be situated. This is true although, in consequence of the phases, we cannot see the whole face of the moon except when she is full. But whether it is the New Moon, or First Quarter, or Full Moon, or Last Quarter, or Old Moon, that we look at, the mountains and plains visible are identically the same. If the moon did not turn once on her axis in going once around the earth we would see all of her sides in succession, although only at Full Moon could we see an entire hemisphere illuminated by the sun. At Old and New Moon the side presented to the earth would be just the opposite to that presented at Full Moon. At Last Quarter the side facing the earth would be the opposite to that facing the earth at First Quarter.”

“But, tell me,” said my friend, “how did the moon ever come to so humiliating a pass that she must be forever turning on her heel to face the earth?”

“That,” I replied, “is a result of the same forces which originally separated her from the earth and gradually pushed her off to her present distance. In a word it is due to ‘tidal friction.’ Before the moon had solidified, the attraction of the earth raised huge tides in her molten mass. These tides acted on the rotating moon like brakes on a wheel, and at length they slowed down her rotation until its period became identical with that of her revolution around the earth. For the mathematical calculations on which all this is based you must go to Professor Darwin’s book on ‘The Tides,’ or some similar technical treatise; but I imagine you will never do that.”

“Not just at present, I assure you. I do not know what unexpected ambition for the acquirement of scientific knowledge may arise after I have seen those wonders that you have promised to show me in the moon, but, for the moment, I am content to accept your statement of the simple fact.”

“Good!” I replied. “And now, perhaps, you will have the patience to listen to an explanation of a very important relation which exists between the moon and the earth. We are led to it by what I have just said concerning tides. You know, of course that the tides in the oceans are due principally to the attraction of the moon. The sun also raises tides in the seas, but the moon, being so much nearer than the sun, is the chief agent in producing them. Sometimes the moon and the sun act together; at other times they pull in different directions. At Full Moon and at New Moon they pull together, because then they are either on opposite sides of the earth, or both on the same side. At such times we have the highest tides in all our seaports. That occurs about once every fortnight. But when the moon is at either First or Last Quarter, as you will perceive by looking at the diagram, her position, as seen from the earth, is at a right angle with a line drawn to the sun. Then the sun raises tides in one direction and the moon in another direction. The result is that at such periods the tides are lowest. An exact knowledge of these things is very important for mariners because there are harbors whose channels can be navigated by large ships only when the tides are high. Tables predicting the times and heights of the tides have been prepared for all the principal seaports of the world. In truth, the moon renders important services to the inhabitants of the earth, not merely in supplying them with a certain amount of light in the absence of the sun, but also in enabling them to navigate waters which are too shallow for ships except when deepened by the tide. The tides also, in many cases, serve to scour out channels and keep them open.”

“Really, I am quite interested, and the more so because I find the moon, like a dutiful daughter, trying to be of some use to her mother. But have I not heard that the tides occur on both sides of the earth at once, and not simply on the side where the moon happens to be at the time? Please tell me how that can be so?”

“A complete reply to your question would carry us into the realm of mathematical physics, but perhaps I can throw a little light upon the matter with the aid of this second diagram.

img4.jpg

The Moon and the Tides.

“The eclipse is not yet total,” I continued, glancing out of the door, “and we can finish our explanation before it becomes so. Have the kindness, then, to look at the diagram. Suppose E to be the center of the earth, and M the center of the moon. The protuberant portions of the earth C A D and D B C represent the waters of the ocean pulled away from the surface of the earth, if I may so describe it, by the moon’s attraction. You are probably aware that the attraction of gravitation varies with the distance of the attracting body. The distance from the center of the earth to the center of the moon is about 239,000 miles. But the earth being nearly 8,000 miles in diameter, the surface of the ocean at A is about 4,000 miles nearer to the moon than is the center of the earth E. It follows that the force of the moon’s attraction is greater at A than at E. If the water of the ocean were a fixed, solid part of the earth there would be no perceptible effect resulting from this difference in the amount of the moon’s attraction. But since the water is free to move, to a certain extent, it yields to the attraction, and is drawn up a little toward the moon. At the same time it is, in effect, drawn away from C and D. The consequence is the production of a tide on the side facing the moon.

“Now, for the other tide, produced at the same time on that side of the earth which is turned away from the moon. The point B is about 4,000 miles farther from the moon than E; consequently the moon’s attractive force is less at B than at E. From this it results that the body of the earth is more forcibly attracted by the moon than is the water at B. The earth therefore tends to move away from the water at that point, and another tidal protuberance is produced, with its highest part at B. I should add that while the water of the ocean is, to a certain degree, free to respond to these differences of attraction, the earth itself, being solid, can only move as a single body, and, mathematically, we may regard it as if its entire mass were concentrated at the center E. Please remember, however, that this explanation is only elementary, only intended as a graphic representation of the tides, and not as a mathematical demonstration of the way they are produced. Such a demonstration would only be suited to one of the technical books that you have not found as interesting as—some other branches of literature.

“There is just one other thing to which I must ask your attention, and then we shall return to the moon herself and the phenomena of the eclipse now in progress. You will notice in the diagram, that two arrows show the direction in which the earth is continually rotating on its axis, and that a dotted curve, terminating with an arrow point, indicates the course of the moon in her orbit surrounding the earth. The rotation of the earth is so much more rapid than the motion of the moon that the points A and B are carried out of the line drawn from the center of the moon to the center of the earth, in the direction of the arrows. From this it follows that the tides are never directly under the moon, or exactly opposite to her, but sweep in great waves round the globe. The tides produced by the attraction of the sun are only about two fifths as high as those caused by the moon. As I have already explained they are sometimes superposed upon the lunar tides—at New and at Full Moon—and sometimes they are situated at right angles to the lunar tides—at First and Last Quarters.”

“But the eclipse!” interrupted my friend, whose attention had evidently begun to wander. “I think the totality of which you spoke must be at hand, for notice how dark the park has become, and the fireflies are so brilliant under the trees.”

The total phase of the eclipse was, indeed, beginning, and we stepped out on the lawn before the door to watch it. The moon had now passed entirely within the earth’s shadow, but although her light was almost completely obscured as far as its power to illuminate the landscape was concerned, still the face of the moon was dimly visible, as if concealed behind a thick veil. Certain parts of it had a coppery color, producing a very weird effect.

“Dear me!” exclaimed my companion, “I did not think it would look like that! I naïvely supposed that one could not see the eclipsed moon at all, but that she either disappeared or was turned into a kind of black circle in the heavens. And what a strange color she has! Positively it fills me with awe.”

“It is v