Deep Analytics: Technologies for Humanity, AI & Security by Sumit Chakraborty, Suryashis Chakraborty, Kusumita - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

9. CONCLUSION

The expert panel have explored the potential of solar power through deep analytics. It is clear from scope and SWOT analysis that solar power is a potential option of sustainable energy and business model innovation for the future as compared to other sources of energy. Solar power is at the growth phase of technology life-cycle. The technology is still not matured; there are several constraints such as efficiency of solar cell and cost of solar panels. It is possible to extend the scope of solar power to the battery charging of electric vehicles and drones (Ref. : session 7). It may be very useful and economical to adopt solar power driven water pumps in agriculture, warehouses, cold storages and other innovative applications (Ref.: Session 3) . The ultimate success of any innovation effort no longer depends on a single element alone. It is important to understand the customers and competition and also to recognize and align the critical partners in the innovation ecosystem. It is essential to identify the blind spots of solar technology which are efficient solar cell, power electronics circuit and business model innovation.

 

FURTHER READING

img31.pngR.H.Waterman, T.J.Peters and J.R. Phillips. Mckinsey & Company. Structure is not organization. Business Horizons. June’1980.

img31.pngM.W.Johnson, C.M.Chritensen and H.Kagermann. Reinventing your business model. Harvard Business Review. Decmber’2008.

img31.pngM.Hammer. Process management and the future of six sigma. MIT Sloan Management Review, Vol. 43, No. 2, pp.26–32.2002.

img31.pngS.Chakraborty and S.K.Sharma. Enterprise Resource Planning: an integrated strategic framework. International Journal Management and Enterprise Development, Vol. 4, No. 5, 2007.

img31.pngR.Roy. Entrepreneurship. Oxford University Press. 2008.

img31.pngG.Boyle. Renewable Energy. 2nd Edition. Oxford University Press. 2004.

img31.pngDepartment of Energy, USA. Renewable energy: an overview. March’2001.

img31.pngF.Kreith and D.Y.Goswami (edited). Handbook of energy efficiency and renewable energy. CRC Press. 2007.

img31.pngB.K.Bose. Power Electronics and Motor Drives. Advances and trends. Elsevier. 2006.

img31.pngS.K.Mazumder. High-Frequency Inverters: From Photovoltaic, Wind and Fuel Cell Based Renewable and Alternative Energy DER/DG Systems to Energy-Storage Applications. University of Illinois, USA. 2010.

img31.pngX.Yang, Y.Song, G.Wang and W.Wang. A comprehensive review on the development of sustainable energy strategy and implementation in China. IEEE Transactions on Sustainable Energy, volume 1, no. 2, July’2010.

img31.pngH.M.Upadahyaya, T.M.Razykov and A.N.Tiwari. Thin film PV Technology. In F.Kreith and D.Y. Goswami (Edited). Handbook of energy conservation and renewable energy. CRC Press, NY,USA. 2007.

img31.pngT.M.Razykov,B.Rech and A.N.Tiwari (Edited). Special issue on thin film PV. Solar Energy, N6. 2004.

img31.pngS.B.Kjaer, J.K.Pedesen and F.Blaabjerg. A review of single phase grid connected inverters for photovoltaic modules. IEEE Transactions Industrial Application. Volume 41, no. 5, pp. 1292-1306, Sep / Oct’2005.

img31.pngABB online document : Distributed energy storage product presentation. 2010.

img31.pngU.S. Department of Energy. Solar Energy Grid Integration System Energy Storage (SEGIS-ES).May’2008.

img31.pngS.J.Chiang, K.T.Chang and C.Y.Yen. Residential photovoltaic energy storage system. IEEE Transactions on Industrial Electronics. vol. 45, no. 3, pp 385-394, June’1998.

img31.pngR.W.De Doncker, C.Meyer, R.U.Lenke and F.Mura. Power electronics for future utility applications. IEEE 7th International conference Power Electronics Drive System. November’2007.

img31.pngF. Katiraei, R. Iravani, N. Hatziargyriou and A. Dimeas. Microgrids management. IEEE Power Energy Magazine, vol. 6, no. 3, pp. 54–65, May/Jun. 2008.

img31.pngM. Marinelli, F. Sossan, G. T. Costanzo and H. W. Bindner. Testing of a Predictive Control Strategy for Balancing Renewable Sources in a Microgrid. IEEE Transactions on Sustainable Energy.

img31.pngJ.Charias. Maxium power solar converter. Microchip.

img31.pngR.Faranda and S.Leva. A comparative study of MPPT techniques for PV system. 7th WSEAS International Conference on Application of Electrical Engineering, Norway, July,2008.

img31.pngT.Esram and P.L.Chapman. Comparison of photovoltaic array maximum powerpoint tracking techniques. IEEE Transactions on Energy Conversion. Vol. 22, No.. 2, June 2007.

img31.pngJ.Charais. Maximum power solar converter. Microchip Technology Incorporation. 2010.

img31.pngRIB, Italy. Solar amplifier. Code ACG9125.

img31.pngJ.Falin and W.Li. A boost-topology battery charger powered from a solar panel. Texas Instruments. www.power.ti.com.

img31.pnghttp://www.MitsubishiElectric.com

img31.pnghttp://www.tatapowersolar.com

img31.pnghttp://www.msme.gov.in

img31.pnghttp://www.ediindia.org, www.nabard.org

img31.pngS. B. Kjaer, J. K. Pedersen, and F. Blaabjerg. A review of single-phase grid- connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292–1306, Sep./Oct. 2005.

img31.pngS. B. Kjaer, J. K. Pedersen, and F. Blaabjerg. Power inverter topologies for photovoltaic modules-a review. in Proc. 37th IAS Annu. Ind. Appl. Conf. Meet. Rec., 2002, vol. 2, pp. 782–788.

img31.pngF. Blaabjerg, R. Teodorescu, M. Liserre and A. V. Timbus. Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398–1409, Oct.2006.

img31.pngB. J. Pierquet. Designs for Ultra-High Efficiency Grid-Connected Power Conversion. Ph.D. dissertation, Dept. Electric. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, 2011.

img31.pngP.Sanjeevikumar, E.Kabalci, A.Iqbal, H.Abu-Rub, O.Ojo. Control Strategy and Hardware Implementation for DC-DC Boost Power Conversion Based on Proportional-Integral Compensator for High Voltage Application. Engineering Science and Technology: An International Journal (JESTECH), Dec.2014.

img31.pngP.Sanjeevikumar, A.Iqbal, H.Abu-Rub, M.Bishal. Implementation and control of extra high voltage dc-dc boost converter. 7th IET Intl. Conf. on Sustainable Energy and Intelligent System, IET-SEISCON'13,Chennai, India. 2013.

img31.pngF.Blaabjerg, F.Iov, T.Kerekes, R.Teodorescu. Trends in power electronics and control of renewable energy systems. 14th Int. Power Electron. & Motion Control Conf., 2010.

img31.pngJ. M. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson,S. Jemei, M. P. Comech, R. Granadino, and J. I. Frau. Distributed generation: Toward a new energy paradigm. IEEE Ind. Electron. Mag., Vol. 4, No. 1, pp. 52-64, Mar. 2010.

img31.pngR. Lasseter. Smart distribution: Coupled microgrids. IEEE Proc., Vol. 99, No. 6, pp. 1074-1082, Jun. 2011

img31.pngM. Barnes, J. Kondoh, H.Asano, J. Oyarzabal, G. Venkataramanan, R. Lasseter, N. Hatziargyriou, and T. Green. Real-world microgrids – an overview. Proc. IEEE SoSE, pp. 1-8, 2007.

img31.pngN. Hatziargyriou, H. Asano, R. Iravani and C. Marnay. Microgrids. IEEE Power Energy Mag., Vol. 6, No. 4, pp. 78-94, Jul./Aug. 2007.

img31.pngF. Katiraei, R. Iravani, N. Hatziargyriou and A. Dimeas. Microgrids management. IEEE Power and Energy Mag., Vol. 6, No. 3, pp. 54 -65, 2008.

img31.pngA. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg. Evaluation of current controllers for distributed power generation systems. IEEE Trans. Power Electron., Vol. 24, No. 3, pp. 654-664, 2009.

img31.pngM. Kazmierkowski, R. Krishnan, and F. Blaabjerg. Control in Power Electronics. London, U.K.: Academic, 2002.

img31.pngN. Pogaku, M. Prodanovic and T. Green. Modeling, analysis and testing of an inverter-based microgrid. IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 613-625, 2007.

img31.pngP. Kundur, Power system stability and control. New York: McGraw-Hill, 1994.

img31.pngJ. Lopes, C. Moreira and A. Madureira. Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst., Vol. 21, No. 2, pp. 916-924, May 2006.

img31.pngM. H. Nehrir, C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing, Z. Miao, and Z. Salameh. A Review of Hybrid Renewable/Alternative Energy Systems for Electric Power Generation: Configurations, Control, and Applications. IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 392–403, Oct. 2011.

img31.pngK. Kurohane, T. Senjyu, A. Yona, N. Urasaki, T. Goya, and T.Funabashi. A hybrid smart AC/DC power system. IEEE Trans. Smart Grid, vol. 1, no. 2, pp. 199–204, 2010.

img31.pngK. T. Tan, P. L. So, Y. C. Chu, and M. Z. Q. Chen. Coordinated Control and Energy Management of Distributed Generation Inverters in a Microgrid. IEEE Trans. Power Delivery, vol. 28, no. 2, pp. 704–713, Apr. 2013.

img31.pngC. T. Rodríguez, D. V. de la Fuente, G. Garcerá, E. Figueres, and J. A. G. Moreno. Reconfigurable Control Scheme for a PV Microinverter Working in Both Grid-Connected and Island Modes. IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1582–1595, Apr. 2013.

img31.pngSh. Jiang, W. Wang, H. Jin, and D. Xu. Power Management Strategy for Microgrid with Energy Storage System. in Proc. 2011 IEEE IECON- 37th Annual Industrial Electronics Society Conf., pp. 1524-1529.

img31.pngInternational Standard for Testing Solar Cookers ASABE Standard S580 Dr. Paul A. Funk, Avinashilingam University, Coimbatore, India, January 1997.

img31.pngS. C. Mullick, T. C. Kandpal, and A. K. Saxena. Thermal test procedure for box-type solar cookers,Solar Energy, vol. 39, no. 4, pp. 353–360, 1987.

img31.pngS. K. Philip and H. N.Mistry. Solar cooker testing: a suggestion for change in BIS standards. SESI Journal, vol. 5, pp. 17–22,img39.png1995.

img31.pngS. K. Philip, T.K.Chaudhuri and H. N.Mistry. Testing of solar box cookers, in Proceedings of the 3rd International Conference on Solar Cookers Use and Technology, Coimbatore, India, 1997.

img31.pngS. B. Joshi and A. R. Jani. Photovoltaic and Thermal Hybridized Solar Cooker. Hindawi Publishing Corporation ISRN Renewable Energy Volume 2013, Article ID 746189.

img31.pnghttp://www.indiawaterportal.org accessed on 15.08.2018

img31.pnghttp://mnre.gov.in/le-manager/UserFiles/Schemefor-Solar-Pumping- Programme-for-Irrigation-and-Drinking-Water-under-offgrid-and- Decentralised-Solar-applications.pdf accessed on 15.08.2018.

img31.pngTrombly, J. Technology solutions: Nano-PV set to accelerate solarenergy use.img39.pngEnviron. Sci. Technol., 38, pp. 376–376A, 2004.

img31.pngCatchpole, K. R. Nanostructures in photovoltaics. Phil. Trans. Math. Phys. Eng. Sci., 364, pp. 3493–3503, 2006.

img31.pngTsakalakos, L.Nanostructures for photovoltaics. Mater. Sci. Eng., 62(6), pp. 175–189, 2008.

img31.pngGreen, M. Silicon photovoltaic modules: A brief history of the first 50 years.img39.pngProg. Photovolt., 13, pp. 447–455, 2005.

img31.pngJadhav, M. V., Todkar, A. S., Gambhire, V. R., and Sawant, S. Y.. Nanotechnology for powerful solar energy. Int. J. Adv. Biotechnol. Res.,2, pp. 208–212, 2011.

img31.pngHonsberg, C. B., Barnett, A. M., and Kirkpatrick, D.. Nanostructured solar cells for high efficiency photovoltaics. in Photovoltaic Energy Conversion, IEEE 4th World Conference, Hawaii, USA, 2006.

img31.pngNozik, A. J. Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett., 10(8), pp. 2735–2741, 2010.

img31.pngGreen, M. A., Emery, K., Hishikawa, Y., and Warta, W. Solar cell efficiency tables (Version 34). Prog. Photovolt. Res. Appl., 17, pp. 320–326, 2009.

img31.pngGoetzberger, A., Hebling, C., and Schock, H.. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep., 40, pp. 1–46, 2003.

img31.pngBanerjee, S., Misra, M., Mohapatra, S. K., Howard, C.. Mohapatra, S. K., and Kamilla, S. K., Formation of chelating agent driven anodized TiO2 nanotubular membrane and its photovoltaic application. Nanotechnology, 21, pp. 145201, 2010.

img31.pngJadhav, M. V., Todkar, A. S., Gambhire, V. R., and Sawant, S. Y. Nanotechnology for powerful solar energy. Adv. Biotech. Res., 2(1),pp. 208– 212, 2011.

img31.pngEnergy and Environmental Science,

img31.pngAdvanced Energy Materials,

img31.pngProgress in Photovoltaics: Research and Applications,

img31.pngAnnual Review of Chemical and Bimolecular Engineering,

img31.pngNano Energy, Renewable and Sustainable Energy Reviews,

img31.pngIEEE Transactions on Sustainable Energy,

img31.pngIEEE Transactions on Power Electronics,

img31.pngPolymer Reviews,

img31.pngSolar Energy Materials and Solar Cells,

img31.pngSolar Energy,

img31.pngRenewable Energy,

img31.pngEnvironmental Research Letters,

img31.pngIET Renewable Power Generation

img31.pngJournal of Photonics for Energy.

 

QUIZ

  • Explain the technology of solar power from the perspective of energy security. Justify it as a technology for humanity. What is the scope and emerging applications of this technology?
  • What is the dominant design of solar power system?
  • What are the basic elements of the system architecture?
  • What do you mean by technology security? How to verify the security intelligence?
  • What are the strategic moves of technology innovation, adoption and diffusion for solar power? What is the outcome of technology life-cycle and SWOT analysis?
  • How to manage resources for this innovation project?
  • What should be the talent management strategy? What are the skills, leadership style and support demanded by the technological innovation?
  • How to manage technology innovation project efficiently? What should be the shared vision, common goals and communication protocols? How can you ensure a perfect fit among ‘7-S’ elements?
  • Discuss the evolution of nanotechnology for solar cells.
  • Design an intelligent power electronic circuit for solar power system.