NASA's Contributions to Aeronautics, Volume 1 by National Aeronautics & Space Administration. - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

CASE

3

NACA–NASA and the Rotary Wing Revolution

John F. Ward

The NACA and NASA have always had a strong interest in promoting Vertical/Short Take-Off and Landing (V/STOL) flight, particularly those systems that make use of rotary wings: helicopters, autogiros, and tilt rotors. New structural materials, advanced propulsion concepts, and the advent of fly-by-wire technology influenced emergent rotary wing technology. Work by researchers in various Centers, often in partnership with the military, enabled the United States to achieve dominance in the design and development of advanced military and civilian rotary wing aircraft systems, and continues to address important developments in this field.

RW-4.tif

Case-3 Cover Image: The Bell XV-1 Convertiplane. NASA.

If World War I launched the fixed wing aircraft industry, the Second World War triggered the rotary wing revolution and sowed the seeds of the modern American helicopter industry. The interwar years had witnessed the development of the autogiro, an important short takeoff and landing (STOL) predecessor to the helicopter, but one incapable of true vertical flight, or hovering in flight. The rudimentary helicopter appeared at the end of the interwar era, both in Europe and America. In the United States, the Sikorsky R-4 was the first and only production helicopter used in United States’ military operations during the Second World War. R-4 production started in 1943 as a direct outgrowth of the predecessor, VS-300, the first practical American helicopter, which Igor Sikorsky had refined by the end of 1942. That same year, the American Helicopter Society (AHS) was chartered as a professional engineering society representing the rotary wing industry. Also in 1943, the Civil Aeronautics Administration (CAA), forerunner of the Federal Aviation Administration (FAA), issued Aircraft Engineering Division Report No. 32, “Proposed Rotorcraft Airworthiness.” Thus was America’s rotary wing industry birthed.[1]

RW-1.tif

Igor Sikorsky flying the experimental VS-300. Sikorsky.

As a result of the industry’s growth spurred by continued military demand during the Korean war and the Vietnam conflict, interest in helicopters grew almost exponentially. As a result of the boost in demand for helicopters, Sikorsky Aircraft, Bell Helicopter, Piasecki Helicopter (which evolved into Vertol Aircraft Corporation in 1956, becoming the Vertol Division of the Boeing Company in 1960), Kaman Aircraft, Hughes Helicopter, and Hiller Aircraft entered design evaluations and prototype production contracts with the Department of Defense. Over the past 65 years, the rotary wing industry has become a vital sector of the world aviation system. Types of private, commercial and military utilization abound using aircraft designs of increasing capability, efficiency, reliability, and safety. Helicopters have now been joined by the military V-22, the first operational tilt rotor, and emerging rotary wing unmanned aerial vehicles (UAV), with both successful rotary wing concepts having potential civil applications. Over the past 78 years, the National Advisory Committee for Aeronautics (NACA) and its successor, the National Aeronautics and Space Administration (NASA), have made significant research and technology contributions to the rotary wing revolution, as evidenced by numerous technical publications on rotary wing research testing, database analysis, and theoretical developments published since the 1930s. These technical resources have made significant contributions to the Nation’s aircraft industry, military services, and private and commercial enterprises.

The Research Culture

As part of the broad scope of aeronautics research, the rotary wing efforts spanned the full range of research activity, including theoretical study, wind tunnel testing, and ground-based simulation. Flight-test NACA rotary wing research began in the early 1920s with exploratory wind tunnel tests of simple rotor models as the precursor to the basic research undertaken in the 1930s. The Langley Memorial Aeronautical Laboratory, established at Hampton, VA, in 1917, purchased a Pitcairn PCA-2 autogiro in 1931 for research use.[2] The National Advisory Committee for Aeronautics had been formed in 1915 to “supervise and direct scientific study the problems of flight, with a view to their practical solution.” Rotary wing research at Langley proceeded under the direction of the Committee with annual inspection meetings by the full Committee to review aeronautical research progress. In the early 1940s, the Ames Aeronautical Laboratory, now known as the Ames Research Center, opened for research at Moffett Field in Sunnyvale, CA. Soon after, the Aircraft Engine Research Laboratory, known for many years as the Lewis Research Center and now known as the Glenn Research Center, opened in Cleveland, OH. Each NACA Center had unique facilities that accommodated rotary wing research needs. Langley Research Center played a major role in NACA–NASA rotary wing research until 1976, when Ames Research Center was assigned the lead role.

The rotary wing research is carried out by a staff of research engineers, scientists, technical support specialists, senior management, and administrative personnel. The rotary wing research staff draws on the expertise of the technical discipline organizations in areas such as aerodynamics, structures and materials, propulsion, dynamics, acoustics, and human factors. Key support functions include such activities as test apparatus design and fabrication, instrumentation research and development (R&D), and research computation support. The constant instrumentation challenge is to adapt the latest technology available to acquiring reliable research data. Over the years, the related challenge for computation tasks is to perform data reduction and analysis for the increasing sophistication and scope of theoretical investigations and test projects. In the NACA environment, the word “computers” actually referred to a large cadre of female mathematicians. They managed the test measurement recordings, extracted the raw data, analyzed the data using desktop electromechanical calculators, and hand-plotted the results. The NASA era transformed this work from a tedious enterprise into managing the application of the ever-increasing power of modern electronic data recording and computing systems.

The dissemination of the rotary wing research results, which form the basis of NACA–NASA contributions over the years, takes a number of forms. The effectiveness of the contributions depends on making the research results and staff expertise readily available to the Nation’s Government and industry users. The primary method has traditionally been the formal publication of technical reports, studies, and compilations that are available for exploitation and use by practitioners. Another method that fosters immediate dialogue with research peers and potential users is the presentation of technical papers at conferences and technical meetings. These papers are published in the conference proceedings and are frequently selected for broader publication as papers or journal articles by technical societies such as the Society of Automotive Engineers (SAE)–Aerospace and the American Institute of Aeronautics and Astronautics (AIAA). Since 1945, NACA–NASA rotary wing research results have been regularly published in the Proceedings of the American Helicopter Society Annual Forum and the Journal of the AHS. During this time, 30 honorary awards have been presented to NACA and NASA researchers at the Annual Forum Honors Night ceremonies. These awards were given to individual researchers and to technical teams for significant contributions to the advancement of rotary wing technology.

Over the years, the technical expertise of the personnel conducting the ongoing rotary wing research at NACA–NASA has represented a valuable national resource at the disposal of other Government organizations and industry. Until the Second World War, small groups of rotary wing specialists were the prime source of long-term, fundamental research. In the late 1940s, the United States helicopter industry emerged and established technical teams focused on more near-term research in support of their design departments. In turn, the military recognized the need to build an in-house research and development capability to guide their major investments in new rotary wing fleets. The Korean war marked the beginning of the U.S. Army’s long-term commitment to the utilization of rotary wing aircraft. In 1962, Gen. Hamilton H. Howze, the first Director of Army Aviation, convened the U.S. Army Tactical Mobility Requirements Board (Howze Board).[3] This milestone launched the emergence of the Air Mobile Airborne Division concept and thereby the steady growth in U.S. military helicopter R&D and production. The working relationship among Government agencies and industry R&D organizations has been close. In particular, the availability of unique facilities and the existence of a pool of experienced rotary wing researchers at NASA led to the United States Army’s establishing a “special relationship” with NASA and an initial research presence at the Ames Research Center in 1965. This was followed by the creation of co-located and integrated research organizations at the Ames, Langley, and Glenn Research Centers in the early 1970s. The Army organizations were staffed by specialists in key disciplines such as unsteady aerodynamics, aeroelasticity, acoustics, flight mechanics, and advanced design. In addition, Army civilian and military engineering and support personnel were assigned to work full time in appropriate NASA research facilities and theoretical analysis groups. These assignments included placing active duty military test pilots in the NASA flight research organizations. Over the long term, this teaming arrangement facilitated significant research activity. In addition to Research and Technology Base projects, it made it possible to perform major jointly funded and managed rotary wing Systems Technology and Experimental Aircraft programs. The United States Army partnership was augmented by other research teaming agreements with the United States Navy, FAA, the Defense Advanced Research Projects Agency (DARPA), academia, and industry.

NACA 1930–1958: Establishing Fundamentals

While the helicopter industry did not emerge until the 1950s, the NACA was engaged in significant rotary wing research starting in the 1930s at the Langley Memorial Aeronautical Laboratory (LMAL), now the NASA Langley Research Center.[4] The early contributions were the result of studies of the autogiro. The focus was on documenting flight characteristics, performance prediction methods, comparison of flight-test and wind tunnel test results, and theoretical predictions. In addition, fundamental operating problems definition and potential solutions were addressed. In 1931, the NACA made its first direct purchase of a rotary wing aircraft for flight test investigations, a Pitcairn PCA-2 autogiro. (With few exceptions, future test aircraft were acquired as short-term loan or long-term bailment from the military aviation departments.) The Pitcairn was used over the next 5 years in flight-testing and tests of the rotor in the Langley 30- by 60-foot Full-Scale Tunnel. Formal publications of greatest permanent value received “report” status, and the Pitcairn’s first study, NACA Technical Report 434, was the first authoritative information on autogiro performance and rotor behavior.[5]

RW-2 .tif

Pitcairn PCA-2 Autogiro. NASA.

The mid-1930s brought visiting autogiros and manufacturing personnel to Langley Research Center. In addition, analytical and wind tunnel work was carried out on the “Gyroplane,” which incorporated a rotor without the usual flapping or lead-lag hinges at the blade root. This was the first systematic research documented and published for what is now called the “rigid” or “hingeless” rotor. This work was the forerunner of the hingeless rotor’s reappearance in the 1950s and 1960s with extensive R&D effort by industry and Government. The NACA’s early experience with the Gyroplane rotor suggested that “designing toward flexibility rather than toward rigidity would lead to success.” In the 1950s, the NACA began to encourage this design approach to those expressing interest in hingeless rotors.

While the NACA worked to provide the fundamentals of rotary wing aerodynamics, the autogiro industry experienced major changes. Approximately 100 autogiros were built in the United States and hundreds more worldwide. Problems in smaller autogiros were readily addressed, but those in larger sizes persisted. They included stick vibration, heavy control forces, vertical bouncing, and destructive out-of-pattern blade behavior known as ground resonance. Private and commercial use underwent a discouraging stage. However, military interest grew in autogiro utility capabilities for safe flight at low airspeed. In an early example of cooperation with the military, the NACA’s research effort was linked to the needs of the Army Air Corps (AAC), predecessor of the Army Air Forces (AAF). In quick succession, Langley Laboratory conducted flight and/or wind tunnel tests on a series of Kellett Autogiros, including the KD-1, YG-1, YG-1A, YG-1B, and the Pitcairn YG-2. The NACA provided control force and performance measurements, and pilot assessments of the YG-1. In addition, recommendations were provided on maneuver limitations and redesign for better military serviceability. This led to the NACA providing recommendations and pilot training to enable the Army Air Corps to begin conducting its own rotary wing aircraft experimental and acceptance testing.

In the fall of 1938, international events required that the NACA’s emphasis turn to preparedness. The United States required fighters and bombers with superior performance. In the next few years, experimental rotary wing research declined, but important basic groundwork was conducted. Limited effort began on the potentially catastrophic phenomena of ground resonance or coupled rotor-fuselage mechanical instability. Photographs were taken of the rotor-blade out-of-pattern behavior by mounting a camera high on the Langley Field balloon (airship) hangar while an autogiro was operated on the ground. Exploratory flight tests were done using a hub-mounted camera. In these tests blade motion studies were conducted to document the pattern of rotor-blade stalling behavior. In the closing years of the 1930s, analytical progress was also made in the creation of a new theory of rotor aerodynamics that became a classic reference and formed the basis for NACA helicopter experimentation in the 1940s.[6] In these years, the top leadership of the NACA engaged in visible participation in the formal dialogue with the rotating wing community. In 1938, Dr. George W. Lewis, the NACA Headquarters Director of Aeronautical Research, served as Chairman of the Research Programs session of the pioneering Rotating-Wing Aircraft Meeting at the Franklin Institute in Philadelphia. In 1939, Dr. H.J.E. Reid, Director of Langley Laboratory, the NACA’s only laboratory, served as Chairman of the session in Dr. Lewis’s absence.[7]

The early 1940s continued a period of only modest NACA effort on rotary wing research. However, military interest in the helicopter as a new operational asset started to grow with attention to the need for special missions such as submarine warfare and the rescue of downed pilots. As noted in the introduction to this chapter, the need was met by the Sikorsky R-4 (YR-4B), which was the only production helicopter used in United States military operations during the Second World War. The R-4 production started in 1943 as a direct outgrowth of the Sikorsky VS-300. As the helicopter industry emerged, the NACA rotary wing community enjoyed a productive contact through the interface provided by the NACA Rotating Wing (later renamed Helicopter) Subcommittee. It was in these technical subcommittees that experts from Government, industry, and academia spelled out the research needs and set priorities to be addressed by the NACA rotary wing research specialists. The NACA committee and subcommittee roles were marked by a strong supervisory tone, as called for in the NACA charter. The members lent a definite direction to NACA research based on their technical needs. They also attended annual inspection tours of the three NACA Centers to review the progress on the assigned research efforts. In the NASA era, the committees and subcommittees evolved into a more advisory function: commenting upon and ranking the merits of projects proposed by the research teams.

RW-3 .tif

Sikorsky YR-4B tested in the Langley 30 x 60 ft. wind tunnel. NASA.

NACA Report 716, published in 1941, constituted a particularly significant contribution to helicopter theory, for it provided simplified methods and charts for determining rotor power required and blade motion.[8] For the first time, design studies could be performed to begin to assess the impacts of blade-section stalling and tip-region compressibility effects. Theoretical work continued throughout the 1940s to extend the simple theory into the region of more extreme operating conditions. Progress began to be made in unraveling the influence of airfoil selection, high blade-section angles of attack, and high tip Mach numbers. The maximum Mach number excursion occurred as the tip passed through the region where the rotor rotational velocity and the forward airspeed combined.

Flight research was begun with the first production helicopter, the Sikorsky YR-4B. This work produced a series of comparisons of flight-test results with theoretical predictions utilizing the new methodology for rotor performance and blade motion. The results of the comparisons validated the basic theoretical methods for hover and forward flight in the range of practical steady-state operating conditions. The YR-4B helicopter was also tested in the Langley 30 by 60 tunnel.

This facilitated rotor-off testing to provide fuselage-only lift and drag measurements. This in turn enabled the flight measurements to be adjusted for direct comparison with rotor theory.

With research progressing in flight test, wind tunnel test and theory development, a growing, well-documented open rotary wing database was swiftly established. At the request of industry, Langley airfoil specialists designed and tested airfoils specifically tailored to operating in the challenging unsteady aerodynamic environment of the helicopter rotor. However, the state-of-the-art of airfoil development required that the airfoil be designed on the basis of a single, steady airflow condition. Selecting this artful compromise between rapid excursions into the high angle of attack stall regions and the zero-lift conditions was daunting.[9] Database buildup also included the opportunity offered by the YR-4B 30x60 wind tunnel test setup. This provided the opportunity to document a database from hovering tests on six sets of rotor blades of varying construction and geometry. The testing included single, coaxial, and tandem rotor configurations. Basic single rotor investigations were conducted of rotor-blade pressure distribution, Mach number effects, and extreme operation conditions.

In 1952, Alfred Gessow and Garry Myers published a comprehensive textbook for use by the growing helicopter industry.[10] The authors’ training and experience had been gained at Langley Laboratory, and the experimental and theoretical work done by laboratory personnel over the previous 15 years (constituting over 70 published documents) served as the basis of the aerodynamic material developed in the book. The Gessow-Myers textbook remains to this day a classic introduction to helicopter design.

Significant contributions were made in rotor dynamics. The principal contributions addressed the lurking problem of ground resonance, or self-excited mechanical instability—the coupling of in-plane rotor-blade oscillations with the rocking motion of the fuselage on its landing gear. First encountered in some autogiro designs, the potential for a catastrophic outcome also existed for the helicopter.[11] Theory developed and disseminated by the NACA enabled the understanding and analysis of ground resonance. This capability was considered essential to the successful design, production, and general use of rotary wing aircraft. Langley pioneered the use of scaled models for the study of dynamic problems such as ground resonance, blade flutter, and control coupling.[12] This contribution to the contemporary state-of-the-art was a forerunner of the all-encompassing development and use of mathematical modeling throughout the modern rotary wing technical community.

As the helicopter flight-testing experience evolved, the research pilots observed problems in holding to steady, precision flight to enable data recording. Frequent control input adjustments were required to prevent diverging into attitudes that were difficult to recover from. Investigation of these flying quality characteristics led to devising standard piloting techniques to produce research-quality data. Deliberate, sharp-step and pulse-control inputs were made, and the resulting aircraft pitch, roll, and yaw responses were recorded for a few seconds. Out of this work came the research specialties of rotary wing flying qualities, stability and control, and handling qualities. Standard criteria for defining required flying qualities specifications gradually emerged from the NACA flight research. The results of this work supported the development of Navy helicopter specifications in the early 1950s and eventually for all military helicopters in 1956. In 1957, research at the NACA Ames Research Center produced a systematic protocol for pilots to assess aircraft handling qualities.[13] The importance of damping of angular velocity and control power, and their interrelation, was investigated in Langley flight-testing. The results provided the basis for a major portion of formal flying-qualities criteria.[14] After modification in 1969 based on extensive study of in-flight and simulation tasks at Ames, the Cooper-Harper Handling Qualities Rating Scale was published. It remains the standard for evaluating aircraft flying qualities, including rotary wing vehicles.[15]

In the late 1950s, the Army expanded the use of helicopters. The rotary wing industry grew to the point that manufacturers’ engineering departments included research and development staff. In addition, the Army established an aviation laboratory (AVLABS), now known as the Aviation Applied Technology Directorate (AATD), at the Army Transportation School, Fort Eustis, VA. This organization was able to sponsor and publish research conducted by the manufacturers. Fort Eustis was situated within 25 miles of the NACA’s Langley Research Center in Hampton on the Virginia peninsula. A majority of the key AVLABS personnel were experienced NACA rotary wing researchers. As it turned out, this personnel relocation, amounting to an unplanned “contribution” of expertise to the Army, was the forerunner of significant, long-term, co-located laboratory teaming agreements between the Army and NASA.

NASA 1958–1970: A Time of Transition

The transformation of the NACA into NASA in 1958 was marked by an inevitable subordination of the NACA’s aeronautical research charter to NASA’s mandated space mission work. The assigned aeronautics staff dropped over 80 percent, from 7,100 to 1,400, as the space program gained momentum in the early 1960s. In the new space-focused environment, aeronautics needed to be product-oriented to attract budget allocation support. In these circumstances, helicopter research lost ground as the focus shifted to new nonrotor Vertical Take-Off and Landing (VTOL) and Short Take-Off and Landing aircraft. In many cases, the rotary wing work formed the base for VTOL investigations. In the case of NACA–NASA rotor-flow studies, experimental and theoretical studies on rotor-time-averaged inflow led to extensive work on establishing wind tunnel jet-boundary layer (wall interference) correction methodology for other VTOL, as well as rotor-borne, lifting systems.[16]

In a sense, it became the U.S. Army’s turn to bolster NASA rotary wing endeavors in support of the Army’s need for continued helicopter development. In 1965, the Army was granted permission to reactivate, staff, and utilize the Ames 7- by 10-foot Tunnel No. 2. In addition, the Army provided personnel to assist Ames in carrying out projects of interest to the Army. A group of about 45 people was established by the Army and identified as the Army Aeronautical Activity at Ames (AAA–A).[17] In 1970, the working relationship between NASA and the Army was significantly enhanced. Co-located Army research organizations were established at Ames, Langley, and Lewis (now Glenn) Research Centers. They focused on the respective Center’s specialty of aeroflight dynamics, structures, and propulsion. This teaming laid the solid groundwork for major rotary wing programs that NASA and the Army jointly planned, executed, and funded in the 1970s and 1980s that influenced both military and civilian rotary wing aircraft development.

One of the unique research facilities authorized in 1939 and operated by the NACA, and then NASA, was the 40- by 80-foot Full-Scale Tunnel at Ames. This research facility also provided the opportunity to work directly with industry on vehicle development programs. In the case of rotary wing aircraft, the tunnel was utilized for investigating new vehicle and rotor system concepts and for thoroughly documenting the basic aerodynamic behavior of prototype and production articles. By the 1960s, numerous in-house and industry full-scale rotary wing hardware were tested. Examples include the Bell XV-1 “convertiplane” in 1953–1954, followed by many other projects, including a modified production rotor incorporating leading edge camber and boundary-layer control; the Bell UH-1 “Huey” helicopter (tested to assist in the development of a high-performance flight-test helicopter); a folded rotor with test data obtained in start-stop and folding conditions at forward speeds; and a four-bladed rotor investigation with extensive rotor-blade pressure measurements taken as a followup to prior flight test measurements made at Langley Research Center.[18]

The pressure-instrumented blade used in the latter tests had an extremely limited operating life of only 10 hours. This was because of the installation of nearly 50 miniature differential pressure transducers inside the rotor blade. This required that a total of almost 100 small holes be drilled in the upper and lower surface of the primary structure D-spar—normally an absolute “safety of flight” violation. The conservative 10-hour limit was based upon conservative crack-growth-rate limits determined from blade specimen cyclic load tests. The earlier flight test investigation of blade pressure distributions produced a very significant contribution as a primary database for the understanding of basic rotor unsteady aerodynamics. The tabulated pressure data provided time histories of individual differential pressures and simultaneous blade bending moments around the rotor azimuth in a wide assortment of steady and maneuvering flight conditions.[19] This database became the standard experimental data reference source for advancing theoretical comparison work for many years. As an aside, in working with the original flight data to hand-digitize the detailed recordings of differential pressure time-history traces, it became possible, in time, to visually recognize the specific flight-test condition by the periodic pressure trace signature.[20] It was possible to identify the rotor’s actual flight condition relative to the surrounding airmass. This still raises the question of the possibility of applying modern signal recognition technology to provide on-board safety-of-flight and noise abatement operating boundary displays for the pilot.

Flying qualities flight investigations emphasized the importance of ample damping of angular velocity and of control power (rotor-generated aircraft pitch and roll control moments) and their interaction. This work at Langley and similar work at Ames provided a significant portion of the helicopter flying qualities criteria. This early work was extended to the use of in-flight simulation using Langley’s YHC-1A tandem rotor helicopter with special onboard computing and recording equipment.[21] The flight operations of most interest were terminal area instrument flight on steep approaches to vertical touchdown landings. The results of this work were initially oriented to nonrotor VTOL operations, but the results were found to be equally applicable to helicopters.