Discrete Time Systems by Mario A. Jordan and Jorge L. Bustamante - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

done in Lemma 7.2 (in the Appendix), where it is shown that

pN, n = u Mnz.

(126)

T, N

Now, for a given T and N, we can obtain an upper bound G

for G using the lower bounds

FT( x), FT, N( x) and FN( x), as follows

T, N

G

=

1 − max{ FT( x), FT, N( x), FN( x)} dx.

(127)

0

index-98_1.png

index-98_2.png

index-98_3.png

index-98_4.png

index-98_5.png

index-98_6.png

index-98_7.png

index-98_8.png

index-98_9.png

index-98_10.png

index-98_11.png

index-98_12.png

index-98_13.png

index-98_14.png

index-98_15.png

index-98_16.png

index-98_17.png

index-98_18.png

index-98_19.png

index-98_20.png

index-98_21.png

index-98_22.png

index-98_23.png

index-98_24.png

index-98_25.png

86

Discrete Time Systems

We do so in the next theorem.

Theorem 4.2. Let T and N be two given positive integers with N 0 ≤ T N and such that for all

0 ≤ m < 2 N, | SN

m | ≥ N 0 ⇒ φ(∞, SN

m ) < ∞ . Let J be the number of sequences such that O( ST

m) has

full column rank. Let E 0

0 and Ej, 0 < j J denote the set of numbers Tr φ(∞, STm) , 0 < m J,

arranged in ascending order, (i.e., Ej = Tr φ(∞, STm ) , for some m

j

j, and E 0 ≤ E 1 ≤ · · · ≤ E f ). For

each 0 ≤ j < J, let πj = ∑ mj P( ST) , and let M, u and v be as defined as in Lemma 4.3. Then, an

k=0

k

upper bound for the EEC is given by

T, N

G G

,

(128)

where

T, N

T

T, N

N

G

= Tr( G 1 + G 2 + G 3 ),

(129)

and

J

T

G 1 = ∑(1 − πj)( Ej+1 − Ej)

(130)

j=0

N−1 N

T, N

0 −1

G 2

= ∑ ∑ λl(1 − λ) jl

j!

P ( j + 1) − P ( j)

(131)

l!( j l)!

j= T l=0

N

G 3 = ∑ u MN+ jz{ Aj( AP ( N) A + Q P ( N)) A j}.

(132)

j=0

Moreover, if A is diagonalizable, i.e.

A = VDV−1,

(133)

with D diagonal, and

max |eig( A)|2 ρ < 1,

(134)

where

ρ = (max |sv M|),

(135)

then the EEC is finite and

N

G 3 ≤ u MNz Tr(Γ ),

(136)

where

Γ

X 1/2 V −1 ⊗ V Δ X 1/2 V −1 ⊗ V

(137)

X

APA + Q P.

(138)

Also, the i, j-th entry [Δ] i, j of the n 2 × n 2 matrix Δ is given by

[Δ]

2 N 0 − 1

i, j

→ −

→ .

(139)

1 − ρ[ D ] i[ D ] j

Proof: First, notice that FT( x) is defined for all x > 0, whereas FT( x) is defined on the range

P ( T) < x P ( N) and FT( x) on P ( N) < x. Now, for all x p∗( T), we have

index-99_1.png

index-99_2.png

index-99_3.png

index-99_4.png

index-99_5.png

index-99_6.png

index-99_7.png

index-99_8.png

index-99_9.png

index-99_10.png

index-99_11.png

index-99_12.png

index-99_13.png

index-99_14.png

index-99_15.png

index-99_16.png

index-99_17.png

index-99_18.png

index-99_19.png

index-99_20.png

index-99_21.png

index-99_22.png

index-99_23.png

index-99_24.png

index-99_25.png

index-99_26.png

index-99_27.png

index-99_28.png

index-99_29.png

index-99_30.png

index-99_31.png

index-99_32.png

index-99_33.png

index-99_34.png

index-99_35.png

index-99_36.png

index-99_37.png

index-99_38.png

index-99_39.png

index-99_40.png

index-99_41.png

index-99_42.png

On the Error Covariance Distribution for Kalman Filters with Packet Dropouts

87

N 0−1

FT( x) =

∑ P( ST) =

λl(

j

1 − ∑

1 − λ) Tl

T!

,

(140)

l!( T l)!

j:| ST|≥ N

l=0

j

0

which equals the probability of receiving a sequence of length T with N 0 or more ones. Now,

for each integer 1 < n < N T, and for p∗( T + n) ≤ x < p∗( T + n + 1), FT, N( x) represents the probability of receiving a sequence of length T + n with more than or exactly N 0 ones.

Hence, FT, N( x) is greater than FT( x) on the range P ( T) < x P ( N). Also, FN( x) measures the probability of receiving a sequence of length N with a subsequence of length T with N 0 or

more ones. Hence, it is greater than FT( x) on P ( N) < x. Therefore, we have that

FT( x),

x p∗( T)

max{ FT( x), FT, N( x), FN( x)} = ⎪ FT, N( x), p∗( T) < x p∗( N) (141)

FN( x), p∗( N) < x.

We will use each of these three bounds to compute each term in (129). To obtain (130), notice

that FT( x) can be written as

FT( x) = πi( x), i( x) = max{ i : Ei < x}.

(142)

In view of the above, we have that

p∗( T)

J

(

T

1 − FT( x)) dx = ∑(1 − πj)( Ej+1 − Ej) = G 1 .

(143)

0

j=0

Using the definition of FT, N ( x) in (112) we obtain

p∗( N)

N−1 N 0−1

(

1 − FT, N( x)) dx = ∑ ∑ λl(1 − λ) jl

j!

P ( j + 1) − P ( j)

(144)

p∗( T)

l!( j l)!

j= T l=0

= T, N

G 2 .

(145)

Similarly, the definition of FN( x) in (118) can be used to obtain

(

T, N

1 − FN( x)) dx = ∑ u Mjz Tr{ Aj( AP ( N) A + Q P ( N)) A j} = G 3 .

(146)

p∗( N)

j=0

To conclude the proof, notice that

uMjz = < u, Mjz >

(147)

u 2 Mjz 2

(148)

u 2 Mj z 2

(149)

u 2 M j z 2

(150)

= u 2(max sv M) j z 2

(151)

=

2 N 0 − 1(max sv M) j.

(152)

index-100_1.png

index-100_2.png

index-100_3.png

88

Discrete Time Systems

1

0.9

0.8

λ = 0.8

λ = 0.5

x)≤ 0.7

(P tP

0.6

0.5

T = 8

Shi et al.

0.40

5

10

15

20

x

Fig. 2. Comparison of the bounds of the Cumulative Distribution Function.

where max sv M denotes the maximum singular value of M. Then, to obtain (136), we use the

result in Lemma 7.1 (in the Appendix) with b = max sv M and X = AP ( N) A + Q P ( N).

5. Examples

In this section we present a numerical comparison of our results with those available in the

literature.

5.1 Bounds on the CDF

In Shi et al. (2010), the bounds of the CDF are given in terms of the probability to observe

missing measurements in a row. Consider the scalar system below, taken from Shi et al. (2010).

A = 1.4, C = 1, Q = 0.2, R = 0.5

(153)

We consider two different measurement arrival probabilities (i.e., λ = 0.5 and λ = 0.8) and

compute the upper and lower bounds for the CDF. We do so using the expressions derived

in Section 3, as well as those given in Shi et al. (2010). We see in Figure 2 how our proposed

bounds are significantly tighter.

5.2 Bounds on the EEC

In this section we compare our proposed EEC bounds with those in Sinopoli et al. (2004)

and Rohr et al. (2010).

index-101_1.png

index-101_2.png

index-101_3.png

index-101_4.png

index-101_5.png

index-101_6.png

index-101_7.png

index-101_8.png

index-101_9.png

index-101_10.png

index-101_11.png

index-101_12.png

index-101_13.png

index-101_14.png

index-101_15.png

index-101_16.png

index-101_17.png

index-101_18.png

index-101_19.png

index-101_20.png

index-101_21.png

index-101_22.png

index-101_23.png

index-101_24.png

index-101_25.png

index-101_26.png

index-101_27.png

index-101_28.png

index-101_29.png

index-101_30.png

index-101_31.png

index-101_32.png

index-101_33.png

index-101_34.png

index-101_35.png

index-101_36.png

index-101_37.png

index-101_38.png

index-101_39.png

index-101_40.png

index-101_41.png

index-101_42.png

On the Error Covariance Distribution for Kalman Filters with Packet Dropouts

89

Bound

Lower Upper

From Sinopoli et al. (2004) 4.57

11.96

From Rohr et al. (2010)

-

10.53

Proposed

10.53 11.14

Table 1. Comparison of EEC bounds using a scalar system.

Bound

Lower