Discrete Time Systems by Mario A. Jordan and Jorge L. Bustamante - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

E{ E {e(0)}} ˆ xe '(0)=O.

0

R

0

R

We have already shown that, for each k∈ [0,N],

E{ E {e(k) r '(k)1

R

d, c

{m(k)=i}}}=O

k

in section 4. Suppose

E{ E {e(k) ˆ x '(k)1

R

e

{m(k)=i}}}=O.

k

Then, since ωd(k) is zero mean, not correlated with ˆ xe (k) and rd, c (k) and independent of

m(k), we have

E{ E {e(k + 1) ˆ x ’ +

R

e (k

1) 1

}

{m k+1 =i}

k+1

}

(

)

= ∑ p ⎡⎡A + M C ⎤ k E E {e k ˆ

+

d, ij ⎢⎣ d,i

i i ⎦ ( )

{ ( ) x '

R

e (k ) {m

1 k =i} ⎣

k

}

( ) } Ad,i MiC2d,i ’(k)

iJ( k)

+ ⎡G

+ M H ⎤ k E E {ω k ˆ

+

⎣ d,i

i

d,i ⎦ ( ) {

x

R

d ( )

'

e (k ) {m

1 k =i} ⎣

k

}

( ) } Ad,i MiC2d,i ’(k)

+ ⎡A

+

C

⎦(k)E{ E {e(k) ud, c*

i 2d,i

'(k)

R

{m

1 k =i}

k

}}B2d,i’(k)

d,i

M

( )

+ ⎡G

+

ω

⎣ d,i MiHd,i ⎦(k)E{ E {

u

R

d (k ) d, c* '(k ) 1

} B

’ k

{m k =i}

k

}

( )

2d,i ( )

+ ⎡A

+ M C

⎦(k)E{ E {e(k) rd,

d,i

i 2d,i

c '(k )

R

{m

1 (k)=i}

k

}}B3d,i’(k)

+ ⎡G

+

H ⎤

ω

d,i ⎦ (k )E{ E {

r

R

d (k ) d, c '(k ) 1

} B

’ k

{m k =i}

k

} 3d,i ( )

d,i

Mi

( )

− ⎡A

+

⎣ d,i MiC2d,i ⎦(k)E{ E {e(k)y'(k)

R

{m

1 k =i}

k

}

( ) } Mi ’(k)

− G

+

ω

⎣ d,i MiHd,i ⎦(k)E{ E {

R

d (k ) y'(k ) 1

} M ’ k

{m k =i}

k

}

( )

i ( )⎦

= ∑ p ⎡−⎡

+

⎢⎣

{

(k)1

} M ’ k

{m k =i} }

i ( )

d,

A

ij

⎣ d,i MiC2d,i ⎦(k)E E {e(k)y'

R

( )

k

iJ( k)

− G

+

ω

⎣ d,i MiHd,i ⎦(k)E{ E {

R

d (k ) y'(k ) {m

1 (k)=i}

k

}}Mi’(k)⎦

128

Discrete Time Systems

where ud, c* (k)=F2,i(k) ˆ xe (k) , i=1, ···,M. Notice that

y(k)= C2d,m(k)(k)x(k)+Hd,m(k)(k)ωd(k)= C2d,m(k)(k)(e(k)+ ˆ xe (k))+Hd,m(k)(k)ωd(k).

Then, by induction on k, we obtain

E{ E {e(k)y’(k)1

E {e(k)e'(k)1

E {e(k) ˆ x '(k)1

R

{m(k)=i}}}= E{

{m(k)=i}}}C2d,i'(k)+E{

e

{m(k)=i}}}C2d,i'(k)

k

Rk

Rk

+ E{ E {e(k)ω

R

d'(k)1{m(k)=i}}}Hd,i'(k)

k

=Yi(k)C2d,i'(k)

We also obtain

E{ E

R

d(k)y’(k)1{m(k)=i}}}

k

= E{ E

E

x '(k)1

R

d(k)e'(k)1{m(k)=i}}}C2d,i'(k)+E{

d(k) ˆ e

{m(k)=i}}}C2d,i'(k)

k

Rk

+ E{ E

R

d(k)ωd'(k)1{m(k)=i}}}Hd,i'(k)

k

= E{ωd(k)ωd'(k)}P{m(k)=i}Hd,i'(k)= πi(k)Hd,i'(k).

Then considering the assumption A4 Gd,i(k)Hd,i'(k) = O, i=1, ···,M, and

Mi(k)(Hd,iHd,i’πi(k)+ C2d,iYi(k)C2d,i’)= - Ad,iYi(k)C2d,i’

by (11), we finally obtain

E{ E

{e(k+1) ˆ x '(k+1) 1

R

e

{m(k+1)=i}}}

k+1

= ∑ pd, ij [-[Ad,i+MiC2d,i](k)Yi(k)C2d,i'(k)-[Gd,i+MiHd,i](k)πi(k)Hd,i'(k)]Mi’(k)

iJ( k)

= ∑ pd, ij [-Ad,iYi(k)C2d,i'(k)-Mi(k)(Hd,iHd,i’πi(k)+ C2d,iYi(k)C2d,i’)]Mi’(k)

iJ( k)

= ∑ pd, ij [-Ad,iYi(k)C2d,i'(k)+ Ad,iYi(k)C2d,i’]Mi’(k)

iJ( k)

=0

which concludes the proof. (Q.E.D.)

7. References

E. K. Boukas. (2006). Stochastic Switching Systems: Analysis and Design, Birkhauser, 0-8176-

3782-6, Boston,

A. Cohen. & U. Shaked. (1997). Linear Discrete-Time H∞-Optimal Tracking with Preview.

IEEE Trans. Automat. Contr., 42, 2, 270-276

O. L. V. Costa. & E. F. Tuesta. (2003). Finite Horizon Quadratic Optimal Control and a

Separation Principle for Markovian Jump Linear Systems. IEEE Trans. Automat.

Contr., 48, 10, 1836-1842

Stochastic Optimal Tracking with Preview for Linear Discrete Time Markovian Jump Systems

129

O. L. V. Costa.; M. D. Fragoso. & R. P. Marques. (2005). Discrete-Time Markov Jump Linear

Systems, Springer, 1-85233-761-3, London

V. Dragan. & T. Morozan. (2004). The linear quadratic optimization problems for a class of

linear stochastic systems with multiplicative white noise and Markovian jumping.

IEEE Trans. Automat. Contr., 49, 5, 665-675

M. D. Fragoso. (1989). Discrete-Time Jump LQG Problem. Int. J. Systems Science, 20, 12, 2539-

2545

M. D. Fragoso.; J. B. R. do Val . & D. L. Pinto Junior. (1995). Jump Linear H∞ Control: the

discrete-time case. Control-Theory and Advanced Technology, 10, 4, 1459-1474

E. Gershon.; D. J. N. Limebeer.; U. Shaked. & I. Yaesh. (2004). Stochastic H∞ Tracking with

Preview for State-Multiplicative Systems. IEEE Trans. Automat. Contr., 49, 11, 2061-

2068

E. Gershon.; U. Shaked. & I. Yaesh. (2004). H∞ tracking of linear continuous-time systems

with stochastic uncertainties and preview. Int. J. Robust and Nonlinear Control, 14, 7,

607-626

E. Gershon.; U. Shaked. & I. Yaesh. (2005). H Control and Estimation of State-Multiplicative

Linear Systems, LNCIS 318, Springer, 1-85233-997-7, London

J.-W. Lee. & P. P. Khargonekar. (2008). Optimal output regulation for discrete-time switched

and Markovian jump linear systems, SIAM J. Control Optim., 47, 1, 40-72

M. Mariton. (1990). Jump Linear Systems in Automatic Control, Marcel Dekker, 0-8247-8200-3,

New York

G. Nakura. (2008a). Noncausal Optimal Tracking for Linear Switched Systems. In: Hybrid

Systems: Computation and Control: 11th International Workshop, HSCC 2008, St. Louis,

MO, USA, April, 2008, Proceedings, LNCS 4981, M. Egerstedt. & B. Mishra. (eds.),

pp.372-385, Springer, 3-540-78928-6, Berlin, Heidelberg.

G. Nakura. (2008b). H∞ Tracking with Preview for Linear Systems with Impulsive Effects -

State Feedback and Full Information Cases-. Proceedings of the 17th IFAC World

Congress, TuA08.4 (CD-ROM), Seoul, Korea

G. Nakura. (2008c). H∞ Tracking with Preview by Output Feedback for Linear Systems with

Impulsive Effects. Proceedings of the 17th IFAC World Congress, TuA08.5 (CD-ROM),

Seoul, Korea

G. Nakura. (2008d). Stochastic Optimal Tracking with Preview for Linear Continuous-Time

Markovian Jump Systems. Proceedings of SICE Annual Conference 2008, 2A09-2 (CD-

ROM), Chofu, Tokyo, Japan

G. Nakura. (2008e). H∞ Tracking with Preview for Linear Continuous-Time Markovian

Jump Systems. Proceedings of SICE 8th Annual Conference on Control Systems, 073-2-1

(CD-ROM), Kyoto, Japan

G. Nakura. (2009). Stochastic Optimal Tracking with Preview for Linear Discrete-Time

Markovian Jump Systems (Extended Abstract). In: Hybrid Systems: Computation and

Control: 12th Conference, HSCC 2009, San Francisco, CA, USA, April, 2009, Proceedings,

LNCS 5469, R. Majumdar. & P. Tabuada. (Eds.), pp. 455-459, Springer, 3-642-00601-

9, Berlin, Heidelberg

130

Discrete Time Systems

G. Nakura. (2010). Stochastic Optimal Tracking with Preview by State Feedback for Linear

Discrete-Time Markovian Jump Systems. International Journal of Innovative

Computing, Information and Control (IJICIC), 6, 1, 15-27

Y. Sawada. (2008). Risk-sensitive tracking control of stochastic systems with preview action.

International Journal of Innovative Computing, Information and Control (IJICIC), 4, 1,

189-198

U. Shaked. & C. E. de Souza. (1995). Continuous-Time Tracking Problems in an H∞ Setting:

A Game Theory Approach. IEEE Trans. Automat. Contr., 40, 5, 841-852

C. E. de Souza. & M. D. Fragoso. (1993). H∞ Control for Linear Systems with Markovian

Jumping Parameters. Control-Theory and Advanced Technology, 9, 2, 457-466

D. D. Sworder. (1969). Feedback Control of a Class of Linear Systems with Jump Parameters.

IEEE Trans. Automat. Contr., AC-14, 1, 9-14

D. D. Sworder. (1972). Control of Jump Parameter Systems with Discontinuous State

Trajectories. IEEE Trans. Automat. Contr., AC-17, 5, 740-741

K. Takaba. (2000). Robust servomechanism with preview action for polytopic uncertain

systems. Int. J. Robust and Nonlinear Control, 10, 2, 101-111

8

The Design of a Discrete Time Model Following

Control System for Nonlinear Descriptor System

Shigenori Okubo1 and Shujing Wu2

1Yamagata University

2Shanghai University of Engineering Science

1Japan

2P. R. China

1. Introduction

This paper studies the design of a model following control system (MFCS) for nonlinear

descriptor system in discrete time. In previous studies, a method of nonlinear model

following control system with disturbances was proposed by Okubo,S. and also a nonlinear

model following control system with unstable zero of the linear part, a nonlinear model

following control system with containing inputs in nonlinear parts, and a nonlinear model

following control system using stable zero assignment. In this paper, the method of MFCS

will be extended to descriptor system in discrete time, and the effectiveness of the method

will be verified by numerical simulation.

2. Expressions of the problem

The controlled object is described below, which is a nonlinear descriptor system in discrete

time.

(

Ex k + 1) = A (

x k) +

(

Bu k) + B f ( (

v k)) + (

d k) (1)

f

(

v k) = C (

x k) (2)

f

y( k) = Cx( k) + 0

d ( k) (3)

The reference model is given below, which is assumed controllable and observable.

x ( k + 1) = A x ( k) + B r ( k)

m

m m

m m

(4)

y ( k) = C x ( k)

m

m m

(5)

, where

(

x k)

n

R , (

d k)

n

R , (

u k)∈ R , y( k)∈ R , y ( k)∈ R ,

f

m

0

d ( k) R , f ( (

v k)) R ,

(

v k)

f

R , r ( k)

m

R , x ( k)

m

n

R ,

m

m

y( k) is the available states output vector, (

v k) is the

measurement output vector, (

u k) is the control input vector, x( k) is the internal state vector

132

Discrete Time Systems

whose elements are available, d( k), 0

d ( k) are bounded disturbances, y ( k)

m

is the model

output.

The basic assumptions are as follows:

1. Assume that ( C, A, )

B is controllable and observable, i.e.

zE A

ran [

k zE A, B] = n, rank

=

n .

C

2. In order to guarantee the existence and uniqueness of the solution and have exponential

function mode but an impulse one for (1), the following conditions are assumed.

zE A ≡/ 0, rankE = deg zE A = r n

3. Zeros of [

] 1

C zE A

B are stable.

In this system, the nonlinear function f ( (

v k)) is available and satisfies the following

constraint.

f ( (

v k)) ≤ +

(

v k) γ

α β

,

where α ≥ 0,β ≥ 0,0 ≤ γ < 1, ⋅ is Euclidean norm, disturbances d( k), 0

d ( k) are bounded and

satisfy

( ) ( ) 0

d

D z d k = (6)

( ) 0( ) 0

d

D z d k = . (7)

Here,

( )

d

D z is a scalar characteristic polynomial of disturbances. Output error is given as

(

e k) = y( k) − y ( k)

m

. (8)

The aim of the control system design is to obtain a control law which makes the output error

zero and keeps the internal states be bounded.

3. Design of a nonlinear model following control system

Let z be the shift operator, Eq.(1) can be rewritten as follows.

C[ zE A] 1

B = N( z) / (

D z)

C[ zE A] 1

B = N ( z) / (

D z) ,

f

f

where (

D z) = zE A , ∂ ( N( z)) = σ and ∂ ( N ( z)) = σ .

i

r

i

i

r

f

fi

Then the representations of input-output equation is given as

(

D z) y( k) = N( z) (

u k) + N ( z) f ( (

v k)) + (

w k)

f

.

(9)

Here (

w k) = Cadj[ zE A] (

d k) + (

D z) 0

d ( k) , ( C , A , B )

m

m

m is controllable and observable. Hence,

C [ zI A ] 1

B = N ( z) / D ( z)

m

m

m

m

m

.

Then, we have

The Design of a Discrete Time Model Following Control System for Nonlinear Descriptor System 133

D ( z) y ( k) = N ( z) r ( k) , (10)

m