Discrete Time Systems by Mario A. Jordan and Jorge L. Bustamante - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

index-203_49.png

index-203_50.png

index-203_51.png

index-203_52.png

index-203_53.png

index-203_54.png

index-203_55.png

index-203_56.png

index-203_57.png

index-203_58.png

index-203_59.png

index-203_60.png

index-203_61.png

index-203_62.png

index-203_63.png

index-203_64.png

index-203_65.png

index-203_66.png

index-203_67.png

Robust Control Design of Uncertain Discrete-Time Systems with Delays

191

dk

ρ’s

K

1

[0.1 0.1 − 0.1 0.5 0.1] [−1.1316 − 0.1360]

2

[0.1 0.1 − 0.1 0.5 0.1] [−0.9690 − 0.0976]

3

[0.1 0.1 − 0.1 0.5 0.1] [−0.7908 − 0.0545]

4 [0.09 0.05 − 0.1 0.55 0.1] [−0.5815 − 0.0306]

Table 1. The stabilization for time-invariant delay dk

dk

ρ’s

K

0 ≤ dk ≤ 1 [0.1 0.1 − 0.1 0.5 0.1] [−1.1209 − 0.1174]

0 ≤ dk ≤ 2 [0.1 0.1 − 0.1 0.5 0.1] [−0.9429 − 0.0839]

0 ≤ dk ≤ 3 [0.1 0.1 − 0.1 0.5 0.1] [−0.7950 − 0.0469]

0 ≤ dk ≤ 4 [0.09 0.05 − 0.1 0.55 0.1] [−0.5586 − 0.0253]

Table 2. The stabilization for time-varying delay dk

dk ¯ α

ρ’s

K

3 0.05

[0.1 0.1 − 0.1 0.5 0.1] [−0.8622 − 0.0059]

3 0.10

[0.1 0.1 − 0.1 0.5 0.1] [−0.6243 − 0.0000]

2 0.15 [0.12 0.12 − 0.1 0.5 0.05] [−1.2515 − 0.0115]

Table 3. The robust stabilization for time-invariant delay dk

dk

¯ α

ρ’s

K

0 ≤ dk ≤ 3 0.05 [0.1 0.1 − 0.1 0.5 0.1] [−0.8394 − 0.0047]

0 ≤ dk ≤ 3 0.10 [0.12 0.1 − 0.1 0.5 0.1] [−1.2539 − 0.0108]

0 ≤ dk ≤ 2 0.15 [0.12 0.12 − 0.1 0.5 0.05] [−1.1740 − 0.0015]

Table 4. The robust stabilization for time-varying delay dk

For time-invariant delay dk, Theorem 4.3 gives control gains for different ¯ α in Table 3. Table 4 provides

the result for time-varying delay dk.

Example 7.2. Consider the following discrete-time delay system:

x( k + 1) = 0.85 + 0.1 α 0

x( k) + −0.1

0

x( k d

0

0.97

−0.1 −0.1

k),

y( k) = 0.5 0.2 x( k) + 0.1 0.1 x( k dk)

where α satisfies | α| ≤ ¯ α for ¯ α is an upper bound of α( k) . We first consider the observer design for a nominal time-delay system with α( k) = 0 by Theorem 6.1. Table 5 shows observer gains for different

time-invariant delay dk, while Table 6 gives observer gains for different time-varying delay dk. In the

following observer design, all ρ’s are set to be zero for simplicity.

Next, we consider the robust observer design for the uncertain time-delay system with α( k) = 0 . In

this case, system matrices can be represented in the form of (1) with matrices given by

A = 0.85 0

, A

, E = ¯ α 0 , E

0 0.97

d =

−0.1 0

−0.1 −0.1

d = E 1 =

0 0 ,

C = 0.5 0.2 , Cd = 0.1 0.1 , H = 0.1 , F( k) = α( k)

0

¯ α .

index-204_1.png

index-204_2.png

index-204_3.png

index-204_4.png

index-204_5.png

index-204_6.png

index-204_7.png

index-204_8.png

index-204_9.png

index-204_10.png

index-204_11.png

index-204_12.png

index-204_13.png

index-204_14.png

index-204_15.png

index-204_16.png

index-204_17.png

index-204_18.png

index-204_19.png

index-204_20.png

index-204_21.png

index-204_22.png

index-204_23.png

index-204_24.png

index-204_25.png

index-204_26.png

index-204_27.png

index-204_28.png

index-204_29.png

index-204_30.png

index-204_31.png

index-204_32.png

index-204_33.png

index-204_34.png

index-204_35.png

index-204_36.png

index-204_37.png

index-204_38.png

index-204_39.png

index-204_40.png

index-204_41.png

index-204_42.png

index-204_43.png

index-204_44.png

index-204_45.png

index-204_46.png

index-204_47.png

index-204_48.png

index-204_49.png

index-204_50.png

index-204_51.png

index-204_52.png

index-204_53.png

index-204_54.png

index-204_55.png

index-204_56.png

index-204_57.png

index-204_58.png

index-204_59.png

index-204_60.png

index-204_61.png

index-204_62.png

index-204_63.png

192

Discrete Time Systems

dk

ˆ ρ’s

¯

K

1 [−22.6 2.5 − 2.1 − 1.9 − 1.9]

0.4835

0.3622

2 [−21.9 6.7 − 0.3 − 2.6 − 1.9]

0.5372

0.3348

3

[−23.4 8.6 0.2 − 1.9 − 1.9]

0.5174

0.3910

4

[−9.0 26.4 0.2 − 2.5 − 1.9]

−3.2281

0.0459

5

[−9.0 25.9 0.2 − 2.5 − 1.9]

−2.3508

−0.7232

Table 5. The observer design for time-invariant delay dk

dk

ˆ ρ’s

¯

K

0 ≤ dk ≤ 1 [−20.2 6.5 − 2.1 − 2.5 − 1.9] 0.6295

0.3777

0 ≤ dk ≤ 2 [−21.9 6.7 − 0.3 − 2.6 − 1.9] 0.5817

0.3475

0 ≤ dk ≤ 3 [−22.0 8.6 0.2 − 1.9 − 1.9]

0.5490

0.3037

0 ≤ dk ≤ 4 [−22.0 8.6 0.2 − 2.5 − 1.9]

0.5157

0.2921

0 ≤ dk ≤ 5 [−22.5 8.6 0.2 − 1.9 − 3.1]

0.5170

0.2956

Table 6. The observer design for time-varying delay dk

dk ¯ α

ˆ ρ’s

¯

K

1 0.5 [−22.6 2.5 − 2.1 − 1.9 − 1.9]

0.5047

0.3813

2 0.4 [−21.9 6.7 − 0.3 − 2.6 − 1.9]

0.5625

0.3633

3 0.3 [−23.4 8.6 0.2 − 1.9 − 1.9]

0.5264

0.3641

4 0.3 [−9.0 26.4 0.2 − 2.5 − 1.9]

−2.6343

−1.6768

5 0.2 [−9.0 25.9 0.2 − 2.5 − 1.9]

−2.5959

−1.5602

Table 7. The observer design for time-invariant delay dk

For time-invariant delay dk, Theorem 6.2 gives observer gains for different ¯ α in Table 7. Table 8 provides

observer gains for time-varying delay dk by the same theorem.

8. Conclusions

In this paper, we proposed stabilization and robust stabilization method for discrete-time

systems with time-varying delay.

Our conditions were obtained by introducing new

Lyapunov function and using Leibniz-Newton formula and free weighting matrix method.

index-205_1.png

index-205_2.png

index-205_3.png

index-205_4.png

index-205_5.png

index-205_6.png

index-205_7.png

index-205_8.png

index-205_9.png

index-205_10.png

index-205_11.png

index-205_12.png

index-205_13.png

index-205_14.png

index-205_15.png

index-205_16.png

index-205_17.png

index-205_18.png

index-205_19.png

index-205_20.png

index-205_21.png

index-205_22.png

index-205_23.png

index-205_24.png

index-205_25.png

Robust Control Design of Uncertain Discrete-Time Systems with Delays

193

dk

¯ α

ˆ ρ’s

¯

K

0 ≤ dk ≤ 1 0.5 [−20.2 6.5 − 2.1 − 2.5 − 1.9] 0.6345

0.3520

0 ≤ dk ≤ 2 0.4 [−21.9 6.7 − 0.3 − 2.6 − 1.9] 0.5870

0.3153

0 ≤ dk ≤ 3 0.3 [−22.0 8.6 0.2 − 1.9 − 1.9]

0.5675

0.3003

0 ≤ dk ≤ 4 0.3 [−22.0 8.6 0.2 − 2.5 − 1.9]

0.5375

0.3444

0 ≤ dk ≤ 5 0.2 [−22.5 8.6 0.2 − 1.9 − 3.1]

0.5077

0.3425

Table 8. The observer design for time-varying delay dk

Similarly, we also gave observer design and robust observer design methods. Numerical

examples were given to illustrate our proposed design method.

9. References

[1] Fridman, E. & Shaked, U. (2005). Stability and guaranteed cost control of uncertain

discrete delay systems, International Journal of Control, Vol.78, 235-246.

[2] Fridman, E. & Shaked, U. (2005). Delay-dependent H∞ control of uncertain discrete delay

systems, European Journal of Control, Vol.11, 29-37.

[3] Gao, H.; Lam, J.:Wang, C. & Wang, Y. (2004). delay-dependent output feedback

stabilization of discrete-time systems with time-varying state delay, IEE Proc. Control

Theory Appl. , Vol.151, 691-698.

[4] Gao, H. & Chen, T. (2007). New results on stability of discrete-time systems with

time-varying state delay, IEEE Transactions on Automatic Control, Vol.52, 328-334.

[5] Hara, M. & Yoneyama, J. (2008), New robust stability condition for uncertain

discrete-time systems with time-varying delay, in SICE Annual Conference 2008, 743-747,

Tokyo, August 2008.

[6] Hara, M. & Yoneyama, J. (2009). An improved robust stability condition for uncertain

discrete time-varying delay systems, Journal of Cybernetics and Systems, Vol.2, 23-27.

[7] He, Y.; Wang, Q.; Xie, L. & Lin, C. (2007). Further improvement of free-weighting matrices

technique for systems with time-varying delay, IEEE Transactions on Automatic Control,

Vol.52, 293-299.

[8] Li, X. & de Souza, C. E. (1997). Delay dependent robust stability and stabilization of

uncertain linear delay systems: a linear matrix inequality approach, IEEE Transactions on

Automatic Control, Vol.42, 1144-1148.

[9] Liu, Y.; Wang, Z. & Liu, X. (2008). Robust H∞ filtering for discrete nonlinear stochastic

systems with time-varying delay, Journal of Mathematical Analysis and Applications,

Vol.341, 318-336.

[10] Ma, S.; Zhang, C. & Cheng, Z. (2008). Delay-dependent Robust H∞ Control for Uncertain

Discrete-Time Singular Systems with Time-Delays, Journal of Computational and Applied

Mathematics, Vol.217, 194-211.

[11] Mahmoud, M.S. (2000). Robust Control and Filtering for Time-Delay Systems, New York:

Marcel Dekker, Inc.

194

Discrete Time Systems

[12] Palhares, R.M.; Campos, C.D.; Ekel, P. Ya.; Leles, M.C.R. & D’Angelo, M.F.S.V. (2005).

Delay-dependent robust H∞ control of uncertain linear systems with lumped delays,

IEE Proc. Control Theory Appl. , Vol.152, 27-33

[13] Xie, L. (1996). Output Feedback H∞ Control of systems with parameter uncertainty,

International Journal of Control, Vol.63, 741-750.

[14] Xu, S.; Lam, J. & Zou, Y. (2005). Improved conditions for delay-dependent robust

stability and stabilization of uncertain discrete-time systems, Asian Journal of Control,

Vol.7, 344-348.

[15] Xu, S.; Lam, J. & Zou, Y. (2006). New results on delay-dependent robust H∞ control for

systems with time-varying delays, Automatica, Vol.42, 343-348.

[16] Ye, D. & Yang, G. H. (2008). Adaptive robust H∞ state feedback control for linear

uncertain systems with time-varying delay, International Journal of Adaptive Control and

Signal Processing, Vol.22, 845-858.

[17] Yoneyama, J. (2008). H∞ disturbance attenuation for discrete-time systems with time

varying delays, SICE Transactions, Vol.44, 285-287(in Japanese).

[18] Yoneyama, J. & Tsuchiya, T. (2008). New delay-dependent conditions on robust stability

and stabilisation for discrete-time systems with time-delay, International Journal of Systems

Science, Vol.39, 1033-1040.

[19] Zhang, X.-M. & Han, Q.-L. (2008). A new finite sum inequality approach to

delay-dependent H∞ control of discrete-time systems with time-varying delay,

International Journal of Robust and Nonlinear Control, Vol.18, 630-647.

12

Quadratic D Stabilizable

Satisfactory Fault-tolerant Control with

Constraints of Consistent Indices for

Satellite Attitude Control Systems

Han Xiaodong1 and Zhang Dengfeng2

1Institute of Telecommunication Satellite, CAST, Beijing 100094

2Nanjing University of Science and Technology, Nanjing 210094,

P.R. China

1. Introduction

In the last twenty some years, much attention has been paid to the problem of fault-tolerant

control in satellite attitude control systems and many methods have been developed and

proven to be capable of tolerating certain types of system faults (see e.g., [1~5] and the

references therein). However, these solutions focused mainly on keeping stability of the faulty

systems and in less consideration of other performance indices. Actually, the performance

requirements of practical satellite control systems are usually multi-objective even in faulty

cases and it is desirable for fault tolerant systems to keep the required performance indices in a

satisfactory and admissible region rather than the optimization of single index [6~7].

As is well known, in many practical applications, it is desirable to construct systems to

achieve better transient property, strong anti-disturbance ability and adequate level of cost

function performance. To this end, optimal controllers have been designed by assigning pole

in a desired region (see e.g., [8] and [9]), using H∞ norm-bound constraint on disturbance

attenuation [10, 11] and the guaranteed cost control (see [12] and [13]), respectively.

Unfortunately, few results have been considered such performance indices simultaneously.

Meanwhile, once some components of satellite attitude control systems go wrong, it is

difficult to confirm desired multiple performances by the existing fault-tolerant control.

Thus, it is necessary to investigate the problem of fault-tolerant control with multiple

performance constraints.

Therefore, it is our motivation to investigate the quadratic D stabilizable satisfactory fault-

tolerant control problem with consistent indices constraints for a class of satellite attitude

control uncertain discrete-time systems subject to actuator failures. In view of possible

actuator failure as well as uncertainties which do not satisfy matching conditions existing in

both the state and control input matrices, we first derive the existence conditions of

satisfactory fault-tolerant state-feedback control law. Then by LMI technique, a convex

optimization problem is formulated to find the corresponding controller. The state-feedback

controller is designed to guarantee the closed-loop system satisfying the pre-specified

quadratic D stabilizability index, H∞ norm-bound