Discrete Time Systems by Mario A. Jordan and Jorge L. Bustamante - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

Ld = 0.3035 0.2942 0.0308

,

24

Discrete Time Systems

K 1 = 0.9961, K 2 = 2.8074 × 10 5,

K 1 =

=

d

9.0820 × 10 4, K 2 d

0.0075

and

α = 10 7.

3. Extension to Hperformance analysis

In this section, we propose an extension of the previous result to H∞ robust observer design

problem. In this case, we give an observer synthesis method which takes into account the

noises affecting the system.

Consider the disturbed system described by the equations :

x( k + 1) = Ax( k) + Adxd( k) + Eωω( k) + B f Hx( k), Hdxd( k) (14a)

y( k) = Cx( k) + Dωω( k)

(14b)

x( k) = x 0( k), for k = −d, ..., 0

(14c)

where ω( k) ∈ s 2 is the vector of bounded disturbances. The matrices and are constants

with appropriate dimensions.

The corresponding observer has the same structure as in (3).

We recall it hereafter

with some different notations.

ˆ x( k + 1) = A ˆ x( k) + Ad ˆ xd( k) + B f v 1( k), v 2( k) (15a)

+ L y( k) − C ˆ x( k) + Ld yd( k) − C ˆ xd( k)

v 1( k) = H ˆ x( k) + K 1 y( k) − C ˆ x( k) + K 1 d yd( k) − C ˆ xd( k) (15b)

v 2( k) = Hd ˆ xd( k) + K 2 y( k) − C ˆ x( k) + K 2 d yd( k) − C ˆ xd( k) .

(15c)

Our aim is to design the matrices L, Ld, K 1, K 2, K 1 and K 2 such that (15) is an asymptotic

d

d

observer for the system (14). The dynamics of the estimation error

ε( k) = x( k) ˆ x( k)

is given by the equation :

ε( k + 1) = A − LC ε( k) + Ad − LdC εd( k) + Bδ fk

(16)

+ Eω − LDω ω( k) − LdDωωd( k)

index-37_1.png

index-37_2.png

index-37_3.png

index-37_4.png

index-37_5.png

index-37_6.png

index-37_7.png

index-37_8.png

index-37_9.png

index-37_10.png

Observers Design for a Class of Lipschitz Discrete-Time Systems with Time-Delay

25

with

δ fk = f Hx( k), Hdxd( k) − f v 1( k), v 2( k))

satisfies (5).

The objective is to find the gains L, Ld, K 1, K 2, K 1 and K 2 such that the estimation error

d

d

converges robustly asymptotically to zero, i.e :

ε s ≤ λ ω s

(17)

2

2

where λ > 0 is the disturbance attenuation level to be minimized under some conditions that

we will determined later.

The inequality (17) is equivalent to

1

1

ε

2

2

s ≤ λ

ω 2 s + ωd s − ω 2( k) .

(18)

2

2

2

2

k= −d

Without loss of generality, we assume that

ω( k) = 0 for k = −d, ..., 1.

Then, (18) becomes

1

ε

2

2

s ≤ λ

ω 2 s + ω

s

.

(19)

2

d

2

2

2

Remark 3.1. In fact, if ω( k) = 0 for k = −d, ..., 1 , we must replace the inequality (17) by

1

1

ε

2

s ≤ λ

ω 2 s + 1 ∑ ω 2( k)

(20)

2

2

2 k= −d

in order to obtain (19) .

Robust Hobserver design problem Li & Fu (1997) :

Given the system (14) and the

observer (15), then the problem of robust H∞ observer design is to determine the matrices

L, Ld, K 1, K 2, K 1 and K 2 so that

d

d

lim ε( k) = 0 for ω( k) = 0;

(21)

k→

ε s ≤ λ ω s ∀ ω( k) = 0; ε( k) = 0, k = −d, ..., 0.

(22)

2

2

From the equivalence between (17) and (19), the problem of robust H∞ observer design (see

the Appendix) is reduced to find a Lyapunov function Vk such that

Wk = Δ V + εT( k) ε( k) − λ 2 ωT( k) ω( k) − λ 2 ωT( k) ω

2

2

d

d( k) < 0

(23)

where

Δ V = Vk+1 − Vk.

At this stage, we can state the following theorem, which provides a sufficient condition

ensuring (23).

index-38_1.png

index-38_2.png

index-38_3.png

index-38_4.png

index-38_5.png

26

Discrete Time Systems

Theorem 3.2. The robust Hobserver design problem corresponding to the system (14) and the

observer (15) is solvable if there exist a scalar α > 0 matrices P = PT > 0, Q = QT > 0, R, Rd, ¯ K 1, ¯ K 2, ¯ K 1 and ¯ K 2 of appropriate dimensions so that the following convex optimization problem d

d

is feasible :

min( γ) subject to Γ < 0

(24)

where

⎡⎡

⎤ ⎡

⎤⎤

−P + Q + In 0 M13 0

0

M14

M T M T

15

16

⎢⎢

( )

−Q M

⎥ ⎢

⎥⎥

23

0

0

M T

M T M T

⎢⎢

⎥ ⎢

24

25

26⎥⎥

⎢⎢

( )

( ) M

⎥ ⎢

0

0

0 ⎥⎥

⎢⎢

33 M34 M35 ⎥ ⎢

⎥⎥

⎢⎣

( )

( ) ( ) −γI

⎦ ⎣ ET

⎦⎥

s

0

ω P − CTR

0

0

( )

( ) ( ) ( ) −γI

s

−DωRd

0

0

Γ = ⎢

(25)

T

M

14

M T M T

15

16

M T

M T M T

P

0

0

24

25

26⎥

⎥ ⎥

0

0

0 ⎥

⎣( ) −αγ 2 I

0

f s 1

ET

ω P − CTR

0

0

( )

( )

−αγ 2 I

f s 2

−DωRd

0

0

with

M34 = BTPEω − BTRTC,

(26a)

M35 = −BTRTdDω,

(26b)

and M13, M14, M15, M16, M24, M25, M26, M33 are de ned in (7) .

The gains L and Ld, K 1, K 2, K 1, K 2 and the minimum disturbance attenuation level λ are given

d

d

respectively by

L = P− 1 RT, Ld = P− 1 RTd

K 1 = 1 ¯

¯

α K 1, K 2 = 1 α K 2,

K 1 = 1 ¯

= 1 ¯

d

α K 1 d, K 2 d

α K 2 d,

λ =

2 γ.

Proof. The proof of this theorem is an extension of that of Theorem 2.1.

Let us consider the same Lyapunov-Krasovskii functional defined in (8). We show that if the

convex optimization problem (24) is solvable, we have Wk < 0. Using the dynamics (16), we

obtain

Wk = ηTS1 η

(27)

where

I

˜

ATP ˜

Eω − ˜

ATP ˜

n 0 0

M

⎣ 0 0 0⎦

⎣ ˜ ATP ˜

E

ω − ˜

ATP ˜

1 +

d

d

0 0 0

BT P ˜

E

S

ω −BTP ˜

1 = ⎢

⎢⎡

T

⎥ ,

(28)

⎢ ˜ ATP ˜

Eω − ˜

ATP ˜

⎣⎣

˜

˜

˜

ET

ET

ATP ˜

E

P ˜

D

ω P ˜

Eω − γIs

ω P ˜

d

ω − ˜

ATd

ω

˜

DT

BTP ˜

E

ω P ˜

˜

DT

ω P ˜

Dω − γIs

ω −BTP ˜

index-39_1.png

index-39_2.png

index-39_3.png

index-39_4.png

index-39_5.png

index-39_6.png

index-39_7.png

Observers Design for a Class of Lipschitz Discrete-Time Systems with Time-Delay

27

where

˜

= Eω − LC

(29a)

˜

= LdDω

(29b)

ηT = εT εT δ f

,

(29c)

d

k ωT ωT

d

γ = λ 2 .

(29d)

2

The matrices M1, ˜

A and ˜

Ad are defined in (9).

As in the proof of Theorem 2.1, since δ fk satisfies (5), we deduce, after multiplying by a scalar

α > 0, that

ηTS2 η ≥ 0

(30)

where

1 M

αγ 2 3 0 0 0

f

S

0

−αI

2 = ⎢

q 0 0

0

0

0 0⎦

(31)

0

0

0 0

and M3 is defined in (11b).

The inequality (31) implies that

Wk = ηT(S1 + S2) η.

(32)

Now, using the Schur Lemma and the notations R = LTP and Rd = LTP, we deduce that

d

the inequality S1 + S2 < 0 is equivalent to Γ < 0. The estimation error converges robustly

asymptotically to zero with a minimum value of the disturbance attenuation level λ =

2 γ if

the convex optimization problem (24) is solvable. This ends the proof of Theorem 3.2.

Remark 3.3. We can obtain a synthesis condition which contains more degree of freedom than the

LMI (6) by using a more general design of the observer. This new design of the observer can take the

following structure :

ˆ x( k + 1) = A ˆ x( k) + Ad ˆ xd( k) + B f v( k), w( k)

d

(33a)

+ L y( k) − C ˆ x( k) + ∑ Li yi( k) − C ˆ xi( k)

i=1

d

v( k) = H ˆ x( k) + K 1 y( k) − C ˆ x( k) + ∑ K 1 i yi( k) − C ˆ xi( k) (33b)

i=1

d

w( k) = Hd ˆ xd( k) + K 2 y( k) − C ˆ x( k) + ∑ K 2 i yi( k) − C ˆ xi( k) .

(33c)

i=1