Grade 10 Math by High School Science, Rory Adams, et al - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub for a complete version.

Chapter 7. Geometry basics

7.1. Points, lines and angles*

Introduction

The purpose of this chapter is to recap some of the ideas that you learned in geometry and trigonometry in earlier grades. You should feel comfortable with the work covered in this chapter before attempting to move onto the Grade 10 Geometry Chapter or the Grade 10 Trigonometry Chapter. This chapter revises:

  1. Terminology: quadrilaterals, vertices, sides, angles, parallel lines, perpendicular lines, diagonals, bisectors, transversals

  2. Similarities and differences between quadrilaterals

  3. Properties of triangles and quadrilaterals

  4. Congruence

  5. Classification of angles into acute, right, obtuse, straight, reflex or revolution

  6. Theorem of Pythagoras which is used to calculate the lengths of sides of a right-angled triangle

Points and Lines

The two simplest objects in geometry are points and lines.

A point is a coordinate that marks a position in space (on a number line, on a plane or in three dimensions or even more) and is denoted by a dot. Points are usually labelled with a capital letter. Some examples of how points can be represented are shown in Figure 7.1.

A line is a continuous set of coordinates in space and can be thought of as being formed when many points are placed next to each other. Lines can be straight or curved, but are always continuous. This means that there are never any breaks in the lines. The endpoints of lines are labelled with capital letters. Examples of two lines are shown in Figure 7.1.

Figure 7.1. 

Points and Lines
Examples of some points (labelled P , Q , R and S ) and some lines (labelled BC and DE ).

Lines are labelled according to the start point and end point. We call the line that starts at a point A and ends at a point B , A B . Since the line from point B to point A is the same as the line from point A to point B , we have that A B = B A .

The length of the line between points A and B is A B . So if we say A B = C D we mean that the length of the line between A and B is equal to the length of the line between C and D .

A line is measured in units of length. Some common units of length are listed in Table 7.1.

Table 7.1. Some common units of length and their abbreviations.
Unit of Length Abbreviation
kilometrekm
metrem
centimetrecm
millimetremm

Angles

An angle is formed when two straight lines meet at a point. The point at which two lines meet is known as a vertex. Angles are labelled with a m39864.id118096.png called a caret on a letter. For example, in Figure 7.2 the angle is at m39864.id118125.png. Angles can also be labelled according to the line segments that make up the angle. For example, in Figure 7.2 the angle is made up when line segments C B and B A meet. So, the angle can be referred to as ∠CBA or ∠ABC . The symbol is a short method of writing angle in geometry.

Angles are measured in degrees which is denoted by , a small circle raised above the text in the same fashion as an exponent (or a superscript).

Note

Angles can also be measured in radians. At high school level you will only use degrees, but if you decide to take maths at university you will learn about radians.

Figure 7.2. 

Angles
Angle labelled as m39864.id118301.png, ∠CBA or ∠ABC

Figure 7.3. 

Angles
Examples of angles. m39864.id118377.png, even though the lines making up the angles are of different lengths.

Measuring angles

The size of an angle does not depend on the length of the lines that are joined to make up the angle, but depends only on how both the lines are placed as can be seen in Figure 7.3. This means that the idea of length cannot be used to measure angles. An angle is a rotation around the vertex.

Using a Protractor

A protractor is a simple tool that is used to measure angles. A picture of a protractor is shown in Figure 7.4.

Figure 7.4. 

Using a Protractor
Diagram of a protractor.

Method:

Using a protractor

  1. Place the bottom line of the protractor along one line of the angle so that the other line of the angle points at the degree markings.

  2. Move the protractor along the line so that the centre point on the protractor is at the vertex of the two lines that make up the angle.

  3. Follow the second line until it meets the marking on the protractor and read off the angle. Make sure you start measuring at 0 .

Measuring Angles : Use a protractor to measure the following angles:

Figure 7.5. 

Measuring Angles : Use a protractor to measure the following angles:


Special Angles

What is the smallest angle that can be drawn? The figure below shows two lines ( CA and AB ) making an angle at a common vertex A . If line CA is rotated around the common vertex A , down towards line AB , then the smallest angle that can be drawn occurs when the two lines are pointing in the same direction. This gives an angle of 0 . This is shown in Figure 7.6

Figure 7.6. 

Special Angles


If line CA is now swung upwards, any other angle can be obtained. If line CA and line AB point in opposite directions (the third case in Figure 7.6) then this forms an angle of 180 .

Note

If three points A , B and C lie on a straight line, then the angle between them is 180 . Conversely, if the angle between three points is 180 , then the points lie on a straight line.

An angle of 90 is called a right angle. A right angle is half the size of the angle made by a straight line (180 ). We say CA is perpendicular to AB or C AA B . An angle twice the size of a straight line is 360 . An angle measuring 360 looks identical to an angle of 0 , except for the labelling. We call this a revolution.

Figure 7.7. 

Special Angles
An angle of 90 is known as a right angle.

Angles larger than 360

All angles larger than 360 also look like we have seen them before. If you are given an angle that is larger than 360 , continue subtracting 360 from the angle, until you get an answer that is between 0 and 360 . Angles that measure more than 360 are largely for mathematical convenience.

Note

  • Acute angle: An angle ≥ 0 and < 90.

  • Right angle: An angle measuring 90.

  • Obtuse angle: An angle > 90 and < 180.

  • Straight angle: An angle measuring 180 .

  • Reflex angle: An angle > 180 and < 360.

  • Revolution: An angle measuring 360.

These are simply labels for angles in particular ranges, shown in Figure 7.8.

Figure 7.8. 

Angles larger than 360 ∘
Three types of angles defined according to their ranges.

Once angles can be measured, they can then be compared. For example, all right angles are 90 , therefore all right angles are equal and an obtuse angle will always be larger than an acute angle.

The following video summarizes what you have learnt so far about angles.


Note that for high school trigonometry you will be using degrees, not radians as stated in the video. Radians are simply another way to measure angles. At university level you will learn about radians.

Special Angle Pairs

In Figure 7.10, straight lines AB and CD intersect at point X, forming four angles: m39864.id119646.png or ∠BXD , m39864.id119675.png or ∠BXC , m39864.id119705.png or ∠CXA and m39864.id119735.png or ∠AXD .

Figure 7.10. 

Special Angle Pairs
Two intersecting straight lines with vertical angles m39864.id119804.png and m39864.id119837.png.

The table summarises the special angle pairs that result.

Table 7.2.
Special AnglePropertyExample
adjacent anglesshare a common vertex and a common side m39864.id119930.png, m39864.id119964.png, m39864.id119999.png, m39864.id120034.png
linear pair (adjacent angles on a straight line)adjacent angles formed by two intersecting straight lines that by definition add to 180 m39864.id120095.png; m39864.id117519.png; m39864.id117580.png; m39864.id117643.png
opposite anglesangles formed by two intersecting straight lines that share a vertex but do not share any sides m39864.id120151.png; m39864.id120201.png
supplementary anglestwo angles whose sum is 180
complementary anglestwo angles whose sum is 90

Note

The opposite angles formed by the intersection of two straight lines are equal. Adjacent angles on a straight line are supplementary.

The following video summarises what you have learnt so far


Parallel Lines intersected by Transversal Lines

Two lines intersect if they cross each other at a point. For example, at a traffic intersection two or more streets intersect; the middle of the intersection is the common point between the streets.

Parallel lines are lines that never intersect. For example the tracks of a railway line are parallel. We wouldn't want the tracks to intersect as