Collection: Analysis of Functions of a Single Variable |
Edited by: Lawrence Baggett |
URL: http://cnx.org/content/col11249/1.1/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Preface to Analysis of Functions of a Single Variable: A Detailed Development |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36084/1.3/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Real and Complex Numbers: Definition of the Numbers 1, i, and the square root of 2 |
Used here as: Definition of the Numbers 1, i, and the square root of 2 |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36082/1.3/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Real and Complex Numbers: The Natural Numbers and the Integers |
Used here as: The Natural Numbers and the Integers |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36075/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Real and Complex Numbers: The Rational Numbers |
Used here as: The Rational Numbers |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36061/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Real and Complex Numbers: The Real Numbers |
Used here as: The Real Numbers |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36069/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Real and Complex Numbers: Properties of the Real Numbers |
Used here as: Properties of the Real Numbers |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36085/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Real and Complex Numbers: Intervals and Approximation |
Used here as: Intervals and Approximation |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36094/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Real and Complex Numbers: The Geometric Progression and the Binomial Theorem |
Used here as: The Geometric Progression and the Binomial Theorem |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36104/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Real and Complex Numbers: The Complex Numbers |
Used here as: The Complex Numbers |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36113/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Introduction to the Limit of a Sequence of Numbers: Definition of the Number e: |
Used here as: Definition of the Number e |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36117/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Limit of a Sequence of Numbers: Sequences and Limits |
Used here as: Sequences and Limits |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36118/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Limit of a Sequence of Numbers: Existence of Certain Fundamental Limits |
Used here as: Existence of Certain Fundamental Limits |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36120/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Limit of a Sequence of Numbers: Definition of e |
Used here as: Definition of e |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36124/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Limit of a Sequence of Numbers: Properties of Convergent Sequences |
Used here as: Properties of Convergent Sequences |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36126/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Limit of a Sequence of Numbers: Subsequences and Cluster Points |
Used here as: Subsequences and Cluster Points |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36129/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Limit of a Sequence of Numbers: A Little Topology |
Used here as: A Little Topology |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36157/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: The Limit of a Sequence of Numbers: Infinite Series |
Used here as: Infinite Series |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36135/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Functions and Continuity Definition of the Number π |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36131/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Functions and Continuity: Functions |
Used here as: Functions |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36141/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Functions and Continuity: Polynomial Functions |
Used here as: Polynomial Functions |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36147/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Functions and Continuity: Continuity |
Used here as: Continuity |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36150/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Functions and Continuity: Continuity and Topology |
Used here as: Continuity and Topology |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36152/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Functions and Continuity: Deeper Analytic Properties of Continuous Functions |
Used here as: Deeper Analytic Properties of Continuous Functions |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36167/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Functions and Continuity: Power Series Functions |
Used here as: Power Series Functions |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36165/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Functions and Continuity: The Elementary Transcendental Functions |
Used here as: The Elementary Transcendental Functions |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36160/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Functions and Continuity: Analytic Functions and Taylor Series |
Used here as: Analytic Functions and Taylor Series |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36168/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Functions and Continuity: Uniform Convergence |
Used here as: Uniform Convergence |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36178/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Differentiation, Local Behavior E^iπ = -1. |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36173/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Differentiation, Local Behavior: The Limit of a Function |
Used here as: The Limit of a Function |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36185/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Differentiation, Local Behavior: The Derivative of a Function |
Used here as: The Derivative of a Function |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36186/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Differentiation, Local Behavior: Consequences of Differentiability, the Mean Value Theorem |
Used here as: Consequences of Differentiability, the Mean Value Theorem |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36203/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Differentiation, Local Behavior: The Exponential and Logarithm Functions |
Used here as: The Exponential and Logarithm Functions |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36199/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Differentiation, Local Behavior: The Trigonometric and Hyperbolic Functions |
Used here as: The Trigonometric and Hyperbolic Functions |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36196/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Differentiation, Local Behavior: L'Hopital's Rule |
Used here as: L'Hopital's Rule |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36201/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Differentiation, Local Behavior: Higher Order Derivatives |
Used here as: Higher Order Derivatives |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36192/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Differentiation, Local Behavior: Taylor Polynomials and Taylor's Remainder Theorem |
Used here as: Taylor Polynomials and Taylor's Remainder Theorem |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36204/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Differentiation, Local Behavior: The General Binomial Theorem |
Used here as: The General Binomial Theorem |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36205/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Differentiation, Local Behavior: More on Partial Derivatives |
Used here as: More on Partial Derivatives |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36206/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Integration, Average Behavior A=π r^2 |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36207/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Integration, Average Behavior: Integrals of Step Functions |
Used here as: Integrals of Step Functions |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36208/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Integration, Average Behavior: Integrable Functions |
Used here as: Integrable Functions |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36209/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Integration, Average Behavior: The Fundamental Theorem of Calculus |
Used here as: The Fundamental Theorem of Calculus |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36210/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Integration, Average Behavior: Consequences of the Fundamental Theorem |
Used here as: Consequences of the Fundamental Theorem |
By: Lawrence Baggett |
URL: http://cnx.org/content/m36211/1.2/ |
Copyright: Lawrence Baggett |
License: http://creativecommons.org/licenses/by/3.0/ |
Module: Integration, Average Behavior: Area of Regions in the Plane
|