Precalculus: An Investigation of Functions by David Lippman and Melonie Rasmussen - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

y

 ( t)

2

= t

y

 ( t) = 2cos( t)

 x( t) = 2sin( t)

 x( t) = 2 + t

 x( t) = 2

− − 2 t

4. 

5. 

6. 

y

 ( t) = 4cos( t)

y

 ( t) = 3 − 2 t

y

 ( t) = 3 + t

A

B

C

D

E

F

From each pair of graphs in the t-x and t-y planes shown, sketch a graph in the x-y plane.

7.

8.

index-525_1.png

index-525_2.png

Section 8.5 Parametric Equations 515

From each graph in the x-y plane shown, sketch a graph of the parameter functions in the

t-x and t-y planes.

9.

10.

Sketch the parametric equations for 2−≤ t≤2.

 x( t) =1+ 2 t

 x( t) = 2 t − 2

11. 

12. 

y

 ( t)

2

= t

y

 ( t)

3

= t

Eliminate the parameter t to rewrite the parametric equation as a Cartesian equation

 x( t) = 5− t

 x( t) = 6 −3 t

13. 

14. 

y

 ( t) = 8 − 2 t

y

 ( t) = 10 − t

x( t) = 2 t +

1

 x( t) = 3 t −1

15. 

16. 

y

 ( t) = 3 t

y

 ( t)

2

= 2 t

 ( ) = 2 t

x t

e

 x( t) = 4log( t)

17. 

18. 

y

 ( t) = 1− 5 t

y

 ( t) = 3 + 2 t

 x( t) 3

= t t

 x( t)

4

= t t

19. 

20. 

y

 ( t) = 2 t

y

 ( t) = t + 2

 x( t)

2 t

= e

 x( t) 5

= t

21. 

22. 

y

10

 ( t)

6 t

= e

y

 ( t) = t

 x( t) = 4cos( t)

 x( t) = 3sin( t)

23. 

24. 

y

 ( t) = 5sin ( t)

y

 ( t) = 6cos( t)

index-526_1.png

index-526_2.png

index-526_3.png

index-526_4.png

516 Chapter 8

Parameterize (write a parametric equation for) each Cartesian equation

25. y ( x)

2

= 3 x + 3

26. y ( x) = 2sin ( x) +1

27. x( y) = 3log( y) + y

28. x( y) = y + 2 y

2

2

2

2

29. x

y

+

= 1

30. x

y

+

= 1

4

9

16 36

Parameterize the graphs shown.

31.

32.

33.

34.

35. Parameterize the line from ( 1,−5) to (2,3) so that the line is at ( 1,−5) at t = 0, and at

(2, 3) at t = 1.

36. Parameterize the line from (4,1) to (6, 2

− ) so that the line is at (4,1) at t = 0, and at

(6, 2)

− at t = 1.

index-527_1.png

index-527_2.png

index-527_3.png

index-527_4.png

Section 8.5 Parametric Equations 517

 x( t) = a cos( bt)

The graphs below are created by parameteric equations of the form 

.

y

 ( t) = c sin ( dt)

Find the values of a, b, c, and d to achieve each graph.

37.

38.

39.

40.

41. An object is thrown in the air with vertical velocity 20 ft/s and horizontal velocity 15

ft/s. The object’s height can be described by the equation y ( t)

2

= 16

t + 20 t , while

the object moves horizontally with constant velocity 15 ft/s. Write parametric

equations for the object’s position, then eliminate time to write height as a function of

horizontal position.

42. A skateboarder riding on a level surface at a constant speed of 9 ft/s throws a ball in

the air, the height of which can be described by the equation y ( t)

2

= 16

t +10 t + 5.

Write parametric equations for the ball’s position, then eliminate time to write height

as a function of horizontal position.

518 Chapter 8

43. A carnival ride has a large rotating arm with

diameter 40 feet centered 35 feet off the ground.

At each end of the large arm are two smaller

rotating arms with diameter 16 feet each. The

larger arm rotates once every 5 seconds, while the

P

smaller arms rotate once every 2 seconds. If you

board the ride when the point P is closest to the

ground, find parametric equations for your

position over time.

44. A hypocycloid is a shape generated by tracking a fixed

point on a small circle as it rolls around the inside of a

larger circle. If the smaller circle has radius 1 and the

large circle has radius 6, find parametric equations for

P

the position of the point P as the smaller wheel rolls in

the direction indicated.

519

Solutions to Selected Exercises

Chapter 1

Section 1.1

1. a. f (40) =13

b. 2 Tons of garbage per week is produced by a city with a population of 5,000.

3. a. In 1995 there are 30 ducks in the lake

b. In 2000 there are 40 ducks in the late

5. a ,b, d, e

7. a, b

9. a, b, d

11. b

13. b, c, e, f

15. f ( )

1 =1, f (3) =1

17. g (2) = 4, g ( 3

− ) = 2

19. f (3) = 53, f (2) =1

f ( 2

− )

f (− )

1

f (0)

f ( )

1

f (2)

21.

8

6

4

2

0

23.

49

18

3

4

21

25.

4

-1

0

1

-4

27.

4

4.414

4.732

5

5.236

29.

-4

-6

-6

-4

0

31.

5

DNE

-3

-1

-1/3

33.

1/4

1/2

1

2

4

35. a. -6

b.-16

37. a. 5

b. 5

3

39. a. iii

b. viii c. I

d. ii e. vi f. iv g. v h. vii

41. a. iv

b. ii c. v d. I

e. vi f. iii

43. ( x − )

3 2 + ( y + 9)2 = 36

45. (a)

(b)

(c)

ad

he

tage

ight

of

he

pos

ighthe

age

time

weight

47a. t

b. a

c. r

d. L: (c, t) and K: (a, p)

index-530_1.png

index-530_2.png

index-530_3.png

520

Section 1.2

1. D: [-5, 3)

R: [0,2]

3. D: 2 < t ≤ 8

R: 6 ≤ g ( t) < 8

5. D: [0,4]

R: [-3, 0]

7. [ ,

2 ∞)

9. (−∞ ]

3

,

11. (−∞ )

6

, ( ∞)

∪ ,6

13.

1

 1

(−∞,− )∪

 − ,∞

2

 2

15. [ 4,

− 4) ( 4,∞

)

17. (−∞,− )

11 ( − ,

11 2) ( ,

2 ∞)

f (− )

1

f (0)

f (2)

f (4)

19.

-4

6

20

34

21.

-1

-2

7

5

23.

-5

3

3

16

 2

if − 6 ≤ x ≤− 1

 3 if x ≤ 0

25. f ( x) 

= − 2 if

−1 < x ≤ 2

27. f ( x) = 

2

x if x > 0

− 4 if

2 < x ≤ 4

 2 x +

3 if

3 ≤ x < −1

29. f ( x) 

=  x

1

if

1 ≤ x ≤ 2

− 2 if

2

< x ≤ 5

31.

33.

35.

index-531_1.png

index-531_2.png

index-531_3.png

521

Section 1.3

1. a) 6 million dollars per year b) 2 million dollars per year

3. 4 5

1

= −

5. 6

4 −1

3

7. 27

9. 352

27

11. 4 b+4

13. 3

15.

1

17.

2

9 + 9 h + 3 h

13 h +169

19. 4 x + 2 h

21. Increasing: (− ,

5

.

1 2). Decreasing: (− ∞,− 5

.

1 )∪ ( ,

2 ∞)

23. Increasing: (− ∞ )

1, ∪ ( ,

3 4). Decreasing: ( )

3

,1 ∪ ( ,

4 ∞)

25. Increasing, concave up

27. Decreasing, concave down

29. Decreasing, concave up

31. Increasing, concave down

33. Concave up (− ∞ )

1, . Concave down ( ,1∞). Inflection point at (1, 2)

35. Concave down (− ∞ )

3

, ∪ ( ,

3 ∞)

37. Local minimum at (3, -22). Inflection at (2, -11).

Increasing on ( ,

3 ∞). Decreasing (− ∞ )

3

,

Concave up (− ∞ 0

, )∪ ( ,

2 ∞). Concave down ( ,

0 2)

39. Local minimum at (-2, -2)

Decreasing (− ,

3 2

− )

Increasing (− ,

2 ∞)

Concave up (− ,

3 ∞)

41. Local minimums at (-3.152, -47.626)

and (2.041, -32.041)

Local maximum at (-0.389, 5.979)

Inflection points at (-2, -24) and (1, -15)

Increasing (−

,

152

.

3

− 389

.

0

)∪ (

,

041

.

2

∞)

Decreasing (− ∞,− 152

.

3

)∪ (−

,

389

.

0

)

041

.

2

Concave up (− ∞,−2)∪ ( ,1∞)

Concave down (− )

1,

2

522

Section 1.4

1. f ( g( ))

0 = 36 . g( f ( ))

0 = 57

3. f ( g( ))

0 = 4 . g( f ( ))

0 = 4

5. 4 7. 9 9. 4 11. 7 13. 0 15. 4 17. 3 19. 2

21. ( ( )) x

f g x =

g ( f ( x)) = 7 x −36

7

23. f ( g( x) = x + 3

g ( f ( x))

2

= x + 3

25. f ( g ( x)) = 5 x +1

g ( f ( x)) = 5 x +1

27. f ( g ( h( x))) = ( x − )4

6 + 6

29a. ( ,

0 2)∪ ( ,

2 ∞)

b. (− ∞,−2)∪ ( ,

2 ∞)

c. ( ,

0 ∞)

3 10 + 20 t

31. b

33a. r ( V ( t))

(

)

3

=

b. 208.94

35. g ( x) = x + f ( x)

2

2,

= x

37. f ( x) 3

= , g ( x)

= x − 5