Structure and Interpretation of Signals and Systems by Edward Ashford Lee and Pravin Varaiya - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub for a complete version.

index-1_1.jpg

Copyright c 2011

Edward Ashford Lee & Pravin Varaiya

All rights reserved

Second Edition, Version 2.02

ISBN 978-0-578-07719-2

Please cite this book as:

E. A. Lee and P. Varaiya,

Structure and Interpretation of Signals and Systems,

Second Edition, LeeVaraiya.org, 2011.

First Edition was printed by:

Addison-Wesley, ISBN 0-201-74551-8, 2003, Pearson Education, Inc.

Contents

Preface

ix

1

Signals and Systems

1

1.1

Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

1.2

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

1.3

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

2

Defining Signals and Systems

49

2.1

Defining functions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

2.2

Defining signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

2.3

Defining systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68

2.4

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

82

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

84

3

State Machines

93

3.1

Structure of state machines . . . . . . . . . . . . . . . . . . . . . . . . .

94

3.2

Finite state machines . . . . . . . . . . . . . . . . . . . . . . . . . . . .

98

3.3

Nondeterministic state machines . . . . . . . . . . . . . . . . . . . . . . 107

iii

3.4

Simulation relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.5

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4

Composing State Machines

137

4.1

Synchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2

Side-by-side composition . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3

Cascade composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.4

Product-form inputs and outputs . . . . . . . . . . . . . . . . . . . . . . 148

4.5

General feedforward composition

. . . . . . . . . . . . . . . . . . . . . 152

4.6

Hierarchical composition . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.7

Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.8

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5

Linear Systems

187

5.1

Operation of an infinite state machine . . . . . . . . . . . . . . . . . . . 189

5.2

Linear functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.3

The [A, B,C, D] representation of a system . . . . . . . . . . . . . . . . . 195

5.4

Continuous-time state-space models . . . . . . . . . . . . . . . . . . . . 218

5.5

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6

Hybrid Systems

231

6.1

Mixed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.2

Modal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.3

Timed automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6.4

More interesting dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 250

6.5

Supervisory control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

6.6

Formal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

iv

Lee & Varaiya, Signals and Systems

6.7

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

7

Frequency Domain

275

7.1

Frequency decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 277

7.2

Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

7.3

Spatial frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

7.4

Periodic and finite signals . . . . . . . . . . . . . . . . . . . . . . . . . . 285

7.5

Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

7.6

Discrete-time signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

7.7

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

8

Frequency Response

311

8.1

LTI systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

8.2

Finding and using the frequency response . . . . . . . . . . . . . . . . . 325

8.3

Determining the Fourier series coefficients . . . . . . . . . . . . . . . . . 339

8.4

Frequency response and the Fourier series . . . . . . . . . . . . . . . . . 340

8.5

Frequency response of composite systems . . . . . . . . . . . . . . . . . 341

8.6

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

9

Filtering

363

9.1

Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

9.2

Frequency response and impulse response . . . . . . . . . . . . . . . . . 378

9.3

Causality

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

9.4

Finite impulse response (FIR) filters . . . . . . . . . . . . . . . . . . . . 382

9.5

Infinite impulse response (IIR) filters . . . . . . . . . . . . . . . . . . . . 395

9.6

Implementation of filters . . . . . . . . . . . . . . . . . . . . . . . . . . 398

9.7

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Lee & Varaiya, Signals and Systems

v

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

10 The Four Fourier Transforms

413

10.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

10.2 The Fourier series (FS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

10.3 The discrete Fourier transform (DFT)

. . . . . . . . . . . . . . . . . . . 419

10.4 The discrete-Time Fourier transform (DTFT) . . . . . . . . . . . . . . . 424

10.5 The continuous-time Fourier transform . . . . . . . . . . . . . . . . . . . 429

10.6 Fourier transforms vs. Fourier series . . . . . . . . . . . . . . . . . . . . 433

10.7 Properties of Fourier transforms . . . . . . . . . . . . . . . . . . . . . . 442

10.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

11 Sampling and Reconstruction

471

11.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

11.2 Reconstruction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

11.3 The Nyquist-Shannon sampling theorem . . . . . . . . . . . . . . . . . . 486

11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

12 Stability

497

12.1 Boundedness and stability

. . . . . . . . . . . . . . . . . . . . . . . . . 501

12.2 The Z transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

12.3 The Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

12.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

13 Laplace and Z Transforms

535

13.1 Properties of the Z tranform

. . . . . . . . . . . . . . . . . . . . . . . . 536

13.2 Frequency response and pole-zero plots . . . . . . . . . . . . . . . . . . 548

13.3 Properties of the Laplace transform . . . . . . . . . . . . . . . . . . . . . 550

vi

Lee & Varaiya, Signals and Systems

13.4 Frequency response and pole-zero plots . . . . . . . . . . . . . . . . . . 555

13.5 The inverse transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

13.6 Steady state response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

13.7 Linear difference and differential equations . . . . . . . . . . . . . . . . 571

13.8 State-space models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582

13.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

14 Composition and Feedback Control

609

14.1 Cascade composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

14.2 Parallel composition

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

14.3 Feedback composition

. . . . . . . . . . . . . . . . . . . . . . . . . . . 624

14.4 PID controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

14.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

A Sets and Functions

653

A.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

A.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682

B Complex Numbers

687

B.1 Imaginary numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

B.2 Arithmetic of imaginary numbers . . . . . . . . . . . . . . . . . . . . . . 689

B.3 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

B.4 Arithmetic of complex numbers

. . . . . . . . . . . . . . . . . . . . . . 691

B.5 Exponentials

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692

B.6 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

Lee & Varaiya, Signals and Systems

vii

Bibliography

701

Notation Index

702

Index

706

viii

Lee & Varaiya, Signals and Systems

Preface

Signals convey information. Systems transform signals. This book introduces the mathe-

matical models used to design and understand both. It is intended for students interested

in developing a deep understanding of how to digitally create and manipulate signals to

measure and control the physical world and to enhance human experience and communi-

cation.

The discipline known as “signals and systems” is rooted in the intellectual tradition of

electrical engineering (EE). This tradition, however, has evolved in unexpected ways.

EE has lost its tight coupling with the “electrical.” So although many of the techniques

introduced in this book were first developed to analyze circuits, today they are widely

applied in information processing, system biology, mechanical engineering, finance, and

many other disciplines.

This book approaches signals and systems from a computational point of view. A more

traditional introduction to signals and systems would be biased towards the historic ap-

plication, analysis and design of circuits. It would focus almost exclusively on linear

time-invariant systems, and would develop continuous-time models first, with discrete-

time models then treated as an advanced topic.

The approach in this book benefits students by showing from the start that the methods of

signals and systems are applicable to software systems, and most interestingly, to systems

ix

Preface

that mix computers with physical devices and processes, including mechanical control

systems, biological systems, chemical processes, transportation systems, and financial

systems. Such systems have become pervasive, and profoundly affect our daily lives.

The shift away from circuits implies some changes in the way the methodology of signals

and systems is presented. While it is still true that a voltage that varies over time is

a signal, so is a packet sequence on a network. This text defines signals to cover both.

While it is still true that an RLC circuit is a system, so is a computer program for decoding

Internet audio. This text defines systems to cover both. While for some systems the state

is still captured adequately by variables in a differential equation, for many it is now the

values in registers and memory of a computer. This text defines state to cover both.

The fundamental limits also change. Although we still face thermal noise and the speed

of light, we are likely to encounter other limits–such as complexity, computability, chaos,

and, most commonly, limits imposed by other human constructions–before we get to

these. The limitations imposed, for example, when transporting voice signals over the In-

ternet, are not primarily physical limitations. They are instead limitations arising from the

design and implementation of the Internet, and from the fact that transporting voice was

never one of the original intentions of the design. Similarly, computer-based audio sys-

tems face latency and jitter imposed by an operating system designed to time share scarce

computing resources among data processing tasks. This text focuses on composition of

systems so that the limits imposed by one system on another can be understood.

The mathematical basis for the discipline also changes with this new emphasis. The

mathematical foundations of circuit analysis are calculus and differential equations. Al-

though we still use calculus and differential equations, we frequently need discrete math,

set theory, and mathematical logic. Whereas the mathematics of calculus and differential

equations evolved to describe the physical world, the world we face as system designers

often has nonphysical properties that are not such a good match for this mathematics.

This text bases the entire study on a highly adaptable formalism rooted in elementary set

theory.

Despite these fundamental changes in the medium with which we operate, the methodol-

ogy of signals and systems remains robust and powerful. It is the methodology, not the

medium, that defines the field.

The book is based on a course at Berkeley required of all majors in Electrical Engineer-

ing and Computer Sciences (EECS). The experience developing the course is reflected in

certain distinguished features of this book. First, no background in electrical engineer-

x

Lee & Varaiya, Signals and Systems

Preface

ing or computer science is assumed. Readers should have some exposure to calculus,

elementary set theory, series, first order linear differential equations, trigonometry, and

elementary complex numbers. The appendices review set theory and complex numbers,

so this background can be made up students.

Approach

This book is about mathematical modeling and analysis of signals and systems, appli-

cations of these methods, and the connection between mathematical models and compu-

tational realizations. We develop three themes. The first theme is the use of sets and

functions as a universal language to describe diverse signals and systems. Signals—

voice, images, bit sequences—are represented as functions with an appropriate domain

and range. Systems are represented as functions whose domain and range are themselves

sets of signals. Thus, for example, an Internet voice signal is represented as a function

that maps voice-like signals into sequences of packets.

The second theme is that complex systems are constructed by connecting simpler sub-

systems in standard ways—cascade, parallel, feedback. The connections determine the

behavior of the interconnected system from the behaviors of component subsystems. The

connections place consistency requirements on the input and output signals of the systems

being connected.

Our third theme is to relate the declarative view (mathematical, “what is”) with the imper-

ative view (procedural, “how to”). That is, we associate mathematical analysis of systems

with realizations of these systems. This is the heart of engineering. When electrical en-

gineering was entirely about circuits, this was relatively easy, because it was the physics

of the circuits that was being described by the mathematics. Today we have to some-

how associate the mathematical analysis with very different realizations of the systems,

most especially software. We do this association through the study of state machines, and

through the consideration of many real-world signals, which, unlike their mathematical

abstractions, have little discernable declarative structure. Speech signals, for instance, are

far more interesting than sinusoids, and yet many signals and systems textbooks talk only

about sinusoids.

Lee & Varaiya, Signals and Systems

xi

Preface

Content

We begin in Chapter 1 by describing signals as functions, focusing on characterizing the

domain and the range for familiar signals that humans perceive, such as sound, images,

video, trajectories of vehicles, as well as signals typically used by machines to store or

manipulate information, such as sequences of words or bits.

Systems, also introduced in Chapter 1, are described as functions, but now the domain and

the range are themselves sets of signals. Systems can be connected to form a more com-

plex system, and the function describing these more complex systems is a composition of

functions describing the component systems.

Chapter 2 focuses on how to define the functions that we use to model both signals and

systems. It distinguishes declarative definitions (assertions of what a signal or system is)

from imperative ones (descriptions of how a signal is produced or processed by a system).

The imperative approach is further developed in Chapter 3 using the notion of state, the

state transition function, and the output function, all in the context of finite state machines.

In Chapter 4, state machines are composed in various ways (cascade, parallel, and feed-

back) to make more interesting systems. Applications to feedback control illustrate the

power of the state machine model.

In Chapter 5, time-based systems are studied, first with discrete-time syst