The Complete Aristotle by Aristotle - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

be.

It is not necessary that it should not It is necessary that it should be.

be.

Now the propositions ‘it is impossible that it should be’ and ‘it is not impossible that it should be’ are consequent upon the propositions ‘it may be’, ‘it is contingent’, and ‘it cannot be’, ‘it is not contingent’, the contradictories upon the contradictories. But there is inversion. The negative of the proposition ‘it is impossible’ is consequent upon the proposition ‘it may be’ and the corresponding positive in the first case upon the 54

negative in the second. For ‘it is impossible’ is a positive proposition and

‘it is not impossible’ is negative.

We must investigate the relation subsisting between these propositions and those which predicate necessity. That there is a distinction is clear. In this case, contrary propositions follow respectively from contradictory propositions, and the contradictory propositions belong to separate sequences. For the proposition ‘it is not necessary that it should be’ is not the negative of ‘it is necessary that it should not be’, for both these propositions may be true of the same subject; for when it is necessary that a thing should not be, it is not necessary that it should be. The reason why the propositions predicating necessity do not follow in the same kind of sequence as the rest, lies in the fact that the proposition ‘it is impossible’ is equivalent, when used with a contrary subject, to the proposition ‘it is necessary’. For when it is impossible that a thing should be, it is necessary, not that it should be, but that it should not be, and when it is impossible that a thing should not be, it is necessary that it should be.

Thus, if the propositions predicating impossibility or non-impossibility follow without change of subject from those predicating possibility or non-possibility, those predicating necessity must follow with the contrary subject; for the propositions ‘it is impossible’ and ‘it is necessary’

are not equivalent, but, as has been said, inversely connected.

Yet perhaps it is impossible that the contradictory propositions predicating necessity should be thus arranged. For when it is necessary that a thing should be, it is possible that it should be. (For if not, the opposite follows, since one or the other must follow; so, if it is not possible, it is impossible, and it is thus impossible that a thing should be, which must necessarily be; which is absurd.)

Yet from the proposition ‘it may be’ it follows that it is not impossible, and from that it follows that it is not necessary; it comes about therefore that the thing which must necessarily be need not be; which is absurd.

But again, the proposition ‘it is necessary that it should be’ does not follow from the proposition ‘it may be’, nor does the proposition ‘it is necessary that it should not be’. For the proposition ‘it may be’ implies a twofold possibility, while, if either of the two former propositions is true, the twofold possibility vanishes. For if a thing may be, it may also not be, but if it is necessary that it should be or that it should not be, one of the two alternatives will be excluded. It remains, therefore, that the proposition ‘it is not necessary that it should not be’ follows from the proposition ‘it may be’. For this is true also of that which must necessarily be.

55

Moreover the proposition ‘it is not necessary that it should not be’ is the contradictory of that which follows from the proposition ‘it cannot be’; for ‘it cannot be’ is followed by ‘it is impossible that it should be’ and by ‘it is necessary that it should not be’, and the contradictory of this is the proposition ‘it is not necessary that it should not be’. Thus in this case also contradictory propositions follow contradictory in the way indicated, and no logical impossibilities occur when they are thus arranged.

It may be questioned whether the proposition ‘it may be’ follows from the proposition ‘it is necessary that it should be’. If not, the contradictory must follow, namely that it cannot be, or, if a man should maintain that this is not the contradictory, then the proposition ‘it may not be’.

Now both of these are false of that which necessarily is. At the same time, it is thought that if a thing may be cut it may also not be cut, if a thing may be it may also not be, and thus it would follow that a thing which must necessarily be may possibly not be; which is false. It is evident, then, that it is not always the case that that which may be or may walk possesses also a potentiality in the other direction. There are exceptions. In the first place we must except those things which possess a potentiality not in accordance with a rational principle, as fire possesses the potentiality of giving out heat, that is, an irrational capacity. Those potentialities which involve a rational principle are potentialities of more than one result, that is, of contrary results; those that are irrational are not always thus constituted. As I have said, fire cannot both heat and not heat, neither has anything that is always actual any twofold potentiality.

Yet some even of those potentialities which are irrational admit of opposite results. However, thus much has been said to emphasize the truth that it is not every potentiality which admits of opposite results, even where the word is used always in the same sense.

But in some cases the word is used equivocally. For the term ‘possible’

is ambiguous, being used in the one case with reference to facts, to that which is actualized, as when a man is said to find walking possible because he is actually walking, and generally when a capacity is predicated because it is actually realized; in the other case, with reference to a state in which realization is conditionally practicable, as when a man is said to find walking possible because under certain conditions he would walk.

This last sort of potentiality belongs only to that which can be in motion, the former can exist also in the case of that which has not this power.

Both of that which is walking and is actual, and of that which has the capacity though not necessarily realized, it is true to say that it is not impossible that it should walk (or, in the other case, that it should be), but 56

while we cannot predicate this latter kind of potentiality of that which is necessary in the unqualified sense of the word, we can predicate the former.

Our conclusion, then, is this: that since the universal is consequent upon the particular, that which is necessary is also possible, though not in every sense in which the word may be used.

We may perhaps state that necessity and its absence are the initial principles of existence and non-existence, and that all else must be regarded as posterior to these.

It is plain from what has been said that that which is of necessity is actual. Thus, if that which is eternal is prior, actuality also is prior to potentiality. Some things are actualities without potentiality, namely, the primary substances; a second class consists of those things which are actual but also potential, whose actuality is in nature prior to their potentiality, though posterior in time; a third class comprises those things which are never actualized, but are pure potentialities.

14

The question arises whether an affirmation finds its contrary in a denial or in another affirmation; whether the proposition ‘every man is just’

finds its contrary in the proposition ‘no man is just’, or in the proposition

‘every man is unjust’. Take the propositions ‘Callias is just’, ‘Callias is not just’, ‘Callias is unjust’; we have to discover which of these form contraries.

Now if the spoken word corresponds with the judgement of the mind, and if, in thought, that judgement is the contrary of another, which pronounces a contrary fact, in the way, for instance, in which the judgement

‘every man is just’ pronounces a contrary to that pronounced by the judgement ‘every man is unjust’, the same must needs hold good with regard to spoken affirmations.

But if, in thought, it is not the judgement which pronounces a contrary fact that is the contrary of another, then one affirmation will not find its contrary in another, but rather in the corresponding denial. We must therefore consider which true judgement is the contrary of the false, that which forms the denial of the false judgement or that which affirms the contrary fact.

Let me illustrate. There is a true judgement concerning that which is good, that it is good; another, a false judgement, that it is not good; and a third, which is distinct, that it is bad. Which of these two is contrary to 57

the true? And if they are one and the same, which mode of expression forms the contrary?

It is an error to suppose that judgements are to be defined as contrary in virtue of the fact that they have contrary subjects; for the judgement concerning a good thing, that it is good, and that concerning a bad thing, that it is bad, may be one and the same, and whether they are so or not, they both represent the truth. Yet the subjects here are contrary. But judgements are not contrary because they have contrary subjects, but because they are to the contrary effect.

Now if we take the judgement that that which is good is good, and another that it is not good, and if there are at the same time other attributes, which do not and cannot belong to the good, we must nevertheless refuse to treat as the contraries of the true judgement those which opine that some other attribute subsists which does not subsist, as also those that opine that some other attribute does not subsist which does subsist, for both these classes of judgement are of unlimited content.

Those judgements must rather be termed contrary to the true judgements, in which error is present. Now these judgements are those which are concerned with the starting points of generation, and generation is the passing from one extreme to its opposite; therefore error is a like transition.

Now that which is good is both good and not bad. The first quality is part of its essence, the second accidental; for it is by accident that it is not bad. But if that true judgement is most really true, which concerns the subject’s intrinsic nature, then that false judgement likewise is most really false, which concerns its intrinsic nature. Now the judgement that that is good is not good is a false judgement concerning its intrinsic nature, the judgement that it is bad is one concerning that which is accidental. Thus the judgement which denies the true judgement is more really false than that which positively asserts the presence of the contrary quality. But it is the man who forms that judgement which is contrary to the true who is most thoroughly deceived, for contraries are among the things which differ most widely within the same class. If then of the two judgements one is contrary to the true judgement, but that which is contradictory is the more truly contrary, then the latter, it seems, is the real contrary. The judgement that that which is good is bad is composite. For presumably the man who forms that judgement must at the same time understand that that which is good is not good.

Further, the contradictory is either always the contrary or never; therefore, if it must necessarily be so in all other cases, our conclusion in the 58

case just dealt with would seem to be correct. Now where terms have no contrary, that judgement is false, which forms the negative of the true; for instance, he who thinks a man is not a man forms a false judgement.

If then in these cases the negative is the contrary, then the principle is universal in its application.

Again, the judgement that that which is not good is not good is parallel with the judgement that that which is good is good. Besides these there is the judgement that that which is good is not good, parallel with the judgement that that that is not good is good. Let us consider, therefore, what would form the contrary of the true judgement that that which is not good is not good. The judgement that it is bad would, of course, fail to meet the case, since two true judgements are never contrary and this judgement might be true at the same time as that with which it is connected. For since some things which are not good are bad, both judgements may be true. Nor is the judgement that it is not bad the contrary, for this too might be true, since both qualities might be predicated of the same subject. It remains, therefore, that of the judgement concerning that which is not good, that it is not good, the contrary judgement is that it is good; for this is false. In the same way, moreover, the judgement concerning that which is good, that it is not good, is the contrary of the judgement that it is good.

It is evident that it will make no difference if we universalize the positive judgement, for the universal negative judgement will form the contrary. For instance, the contrary of the judgement that everything that is good is good is that nothing that is good is good. For the judgement that that which is good is good, if the subject be understood in a universal sense, is equivalent to the judgement that whatever is good is good, and this is identical with the judgement that everything that is good is good.

We may deal similarly with judgements concerning that which is not good.

If therefore this is the rule with judgements, and if spoken affirmations and denials are judgements expressed in words, it is plain that the universal denial is the contrary of the affirmation about the same subject.

Thus the propositions ‘everything good is good’, ‘every man is good’, have for their contraries the propositions ‘nothing good is good’, ‘no man is good’. The contradictory propositions, on the other hand, are ‘not everything good is good’, ‘not every man is good’.

It is evident, also, that neither true judgements nor true propositions can be contrary the one to the other. For whereas, when two propositions are true, a man may state both at the same time without inconsistency, 59

contrary propositions are those which state contrary conditions, and contrary conditions cannot subsist at one and the same time in the same subject.

60

Prior Analytics, Book I

Translated by A. J. Jenkinson

1

We must first state the subject of our inquiry and the faculty to which it belongs: its subject is demonstration and the faculty that carries it out demonstrative science. We must next define a premiss, a term, and a syllogism, and the nature of a perfect and of an imperfect syllogism; and after that, the inclusion or noninclusion of one term in another as in a whole, and what we mean by predicating one term of all, or none, of another.

A premiss then is a sentence affirming or denying one thing of another. This is either universal or particular or indefinite. By universal I mean the statement that something belongs to all or none of something else; by particular that it belongs to some or not to some or not to all; by indefinite that it does or does not belong, without any mark to show whether it is universal or particular, e.g. ‘contraries are subjects of the same science’, or ‘pleasure is not good’. The demonstrative premiss differs from the dialectical, because the demonstrative premiss is the assertion of one of two contradictory statements (the demonstrator does not ask for his premiss, but lays it down), whereas the dialectical premiss depends on the adversary’s choice between two contradictories. But this will make no difference to the production of a syllogism in either case; for both the demonstrator and the dialectician argue syllogistically after stating that something does or does not belong to something else. Therefore a syllogistic premiss without qualification will be an affirmation or denial of something concerning something else in the way we have described; it will be demonstrative, if it is true and obtained through the first principles of its science; while a dialectical premiss is the giving of a choice between two contradictories, when a man is proceeding by question, but when he is syllogizing it is the assertion of that which is apparent and generally admitted, as has been said in the Topics. The nature then of a premiss and the difference between syllogistic, demonstrative, and dialectical premisses, may be taken as sufficiently defined by us in relation to our present need, but will be stated accurately in the sequel.

I call that a term into which the premiss is resolved, i.e. both the predicate and that of which it is predicated, ‘being’ being added and ‘not being’ removed, or vice versa.

61

A syllogism is discourse in which, certain things being stated, something other than what is stated follows of necessity from their being so. I mean by the last phrase that they produce the consequence, and by this, that no further term is required from without in order to make the consequence necessary.

I call that a perfect syllogism which needs nothing other than what has been stated to make plain what necessarily follows; a syllogism is imperfect, if it needs either one or more propositions, which are indeed the necessary consequences of the terms set down, but have not been expressly stated as premisses.

That one term should be included in another as in a whole is the same as for the other to be predicated of all of the first. And we say that one term is predicated of all of another, whenever no instance of the subject can be found of which the other term cannot be asserted: ‘to be predicated of none’ must be understood in the same way.

2

Every premiss states that something either is or must be or may be the attribute of something else; of premisses of these three kinds some are affirmative, others negative, in respect of each of the three modes of attribution; again some affirmative and negative premisses are universal, others particular, others indefinite. It is necessary then that in universal attribution the terms of the negative premiss should be convertible, e.g. if no pleasure is good, then no good will be pleasure; the terms of the affirmative must be convertible, not however, universally, but in part, e.g.

if every pleasure,is good, some good must be pleasure; the particular affirmative must convert in part (for if some pleasure is good, then some good will be pleasure); but the particular negative need not convert, for if some animal is not man, it does not follow that some man is not animal.

First then take a universal negative with the terms A and B. If no B is A, neither can any A be B. For if some A (say C) were B, it would not be true that no B is A; for C is a B. But if every B is A then some A is B. For if no A were B, then no B could be A. But we assumed that every B is A.

Similarly too, if the premiss is particular. For if some B is A, then some of the As must be B. For if none were, then no B would be A. But if some B

is not A, there is no necessity that some of the As should not be B; e.g. let B stand for animal and A for man. Not every animal is a man; but every man is an animal.

62

3

The same manner of conversion will hold good also in respect of necessary premisses. The universal negative converts universally; each of the affirmatives converts into a particular. If it is necessary that no B is A, it is necessary also that no A is B. For if it is possible that some A is B, it would be possible also that some B is A. If all or some B is A of necessity, it is necessary also that some A is B: for if there were no necessity, neither would some of the Bs be A necessarily. But the particular negative does not convert, for the same reason which we have already stated.

In respect of possible premisses, since possibility is used in several senses (for we say that what is necessary and what is not necessary and what is potential is possible), affirmative statements will all convert in a manner similar to those described. For if it is possible that all or some B

is A, it will be possible that some A is B. For if that were not possible, then no B could possibly be A. This has been already proved. But in negative statements the case is different. Whatever is said to be possible, either because B necessarily is A, or because B is not necessarily A, admits of conversion like other negative statements, e.g. if one should say, it is possible that man is not horse, or that no garment is white. For in the former case the one term necessarily does not belong to the other; in the latter there is no necessity that it should: and the premiss converts like other negative statements. For if it is possible for no man to be a horse, it is also admissible for no horse to be a man; and if it is admissible for no garment to be white, it is also admissible for nothing white to be a garment. For if any white thing must be a garment, then some garment will necessarily be white. This has been already proved. The particular negative also must be treated like those dealt with above. But if anything is said to be possible because it is the general rule and natural (and it is in this way we define the possible), the negative premisses can no longer be converted like the simple negatives; the universal negative premiss does not convert, and the particular does. This will be plain when we speak about the possible. At present we may take this much as clear in addition to what has been said: the statement that it is possible that no B is A or some B is not A is affirmative in form: for the expression ‘is possible’

ranks along with ‘is’, and ‘is’ makes an affirmation always and in every case, whatever the terms to which it is added, in predication, e.g. ‘it is not-good’ or ‘it is not-white’ or in a word ‘it is not-this’. But this also will be proved in the sequel. In conversion these premisses will behave like the other affirmative propositions.

63

4

After these distinctions we now state by what means, when, and how every syllogism is produced; subsequently we must speak of demonstration. Syllogism should be discussed before demonstration because syllogism is the general: the demonstration is a sort of syllogism, but not every syllogism is a demonstration.

Whenever three terms are so related to one another that the last is contained in the middle as in a whole, and the middle is either contained in, or excluded from, the first as in or from a whole, the extremes must be related by a perfect syllogism. I call that term middle which is itself contained in another and contains another in itself: in position also this comes in the middle. By extremes I mean both that term which is itself contained in another and that in which another is contained. If A is predicated of all B, and B of all C, A must be predicated of all C: we have already explained what we mean by ‘predicated of all’. Similarly also, if A is predicated of no B, and B of all C, it is necessary that no C will be A.

But if the first term belongs to all the middle, but the middle to none of the last term, there will be no syllogism in respect of the extremes; for nothing necessary follows from the terms being so related; for it is possible that the first should belong either to all or to none of the last, so that neither a particular nor a universal conclusion is necessary. But if there is no necessary consequence, there cannot be a syllogism by means of these premisses. As an example of a universal affirmative relation between the extremes we may take the terms animal, man, horse; of a universal negative relation, the terms animal, man, stone. Nor again can syllogism be formed when neither the first term belongs to any of the middle, nor the middle to any of the last. As an example of a positive relation between the extremes take the terms science, line, medicine: of a negative relation science, line, unit.

If then the terms are universally related, it is clear in this figure when a syllogism will be possible and when not, and that if a syllogism is possible the terms must be related as described, and if they are so related there will be a syllogism.

But if one term is related universally, the other in part only, to its subject, there must be a perfect syllogism whenever universality is posited with reference to the major term either affirmatively or negatively, and particularity with reference to the minor term affirmatively: but whenever the universality is posited in relation to the minor term, or the terms are related in any other way, a syllogism is impossible. I call that term the major in which the middle is contained and that term the minor 64

which comes under the middle. Let all B be A and some C be B. Then if

‘predicated of all’ means what was said above, it is necessary that some C is A. And if no B is A but some C is B, it is necessary that some C is not A. The meaning of ‘predicated of none’ has also been defined. So there will be a perfect syllogism. This holds good also if the premiss BC should be indefinite, provided that it is affirmative: for we shall have the same syllogism whether the premiss is indefinite or particular.

But if the universality is posited with respect to the minor term either affirmatively or negatively, a syllogism will not be possible, whether the major premiss is positive or negative, indefinite or particular: e.g. if some B is or is not A, and all C is B. As an example of a positive relation between the extremes take the terms good, state, wisdom: of a negative relation, good, state, ignorance. Again if no C is B, but some B is or is not A or not every B is A, there cannot be a syllogism. Take the terms white, horse, swan: white, horse, raven. The same terms may be taken also if the premiss BA is indefinite.

Nor when the major premiss is universal, whether affirmative or negative, and the minor premiss is negative and particular, can there be a syllogism, whether the minor premiss be indefinite or particular: e.g. if all B is A and some C is not B, or if not all C is B. For the major term may be predicable both of all and of none of the minor, to some of which the middle term cannot be attributed. Suppose the terms are animal, man, white: next take some of the white things of which man is not predicated-swan and snow: animal is predicated of all of the one, but of none of the other. Consequently there cannot be a syllogism. Again let no B be A, but let some C not be B. Take the terms inanimate, man, white: then take some white things of which man is not predicated-swan and snow: the term inanimate is predicated of all of the one, of none of the other.

Further since it is indefinite to say some C is not B, and it is true that some C is not B, whether no C is B, or not all C is B, and since if terms are assumed such that no C is B, no syllogism follows (this has already been stated) it is clear that this arrangement of terms will not afford a syllogism: otherwise one would have been possible with a universal negative minor premiss. A similar proof may also be given if the universal premiss is negative.

Nor can there in any way be a syllogism if both the relations of subject and predicate are particular, either positively or negatively, or the one negative and the other affirmative, or one indefinite and the other 65

definite, or both indefinite. Terms common to all the above are animal, white, horse: animal, white, stone.

It is clear then from what has been said that if there is a syllogism in this figure with a particular conclusion, the terms must be related as we have stated: if they are related otherwise, no syllogism is possible anyhow. It is evident also that all the syllogisms in this figure are perfect (for they are all completed by means of the premisses originally taken) and that all conclusions are proved by this figure, viz. universal and particular, affirmative and negative. Such a figure I call the first.

5

Whenever the same thing belongs to all of one subject, and to none of another, or to all of each subject or to none of either, I call such a figure the second; by middle term in it I mean that which is predicated of both subjects, by extremes the terms of which this is said, by major extreme that which lies near the middle, by minor that which is further away from the middle. The middle term stands outside the extremes, and is first in position. A syllogism cannot be perfect anyhow in this figure, but it may be valid whether the terms are related universally or not.

If then the terms are related universally a syllogism will be possible, whenever the middle belongs to all of one subject and to none of another (it does not matter which has the negative relation), but in no other way.

Let M be predicated of no N, but of all O. Since, then, the negative relation is convertible, N will belong to no M: but M was assumed to belong to all O: consequently N will belong to no O. This has already been proved. Again if M belongs to all N, but to no O, then N will belong to no O. For if M belongs to no O, O belongs to no M: but M (as was said) belongs to all N: O then will belong to no N: for the first figure has again been formed. But since the negative relation is convertible, N will belong to no O. Thus it will be the same syllogism that proves both conclusions.

It is possible to prove these results also by reductio ad impossibile.

It is clear then that a syllogism is formed when the terms are so related, but not a perfect syllogism; for necessity is not perfectly established m