The Complete Aristotle by Aristotle - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

Nay, indeed, it is not improbable that some of the presentations which come before the mind in sleep may even be causes of the actions cognate to each of them. For as when we are about to act [in waking hours], or are engaged in any course of action, or have already performed certain actions, we often find ourselves concerned with these actions, or performing them, in a vivid dream; the cause whereof is that the dream-movement has had a way paved for it from the original movements set up in the daytime; exactly so, but conversely, it must happen that the movements set up first in sleep should also prove to be starting-points of actions to be performed in the daytime, since the recurrence by day of the thought of these actions also has had its way paved for it in the images before the mind at night. Thus then it is quite conceivable that some dreams may be tokens and causes [of future events].

Most [so-called prophetic] dreams are, however, to be classed as mere coincidences, especially all such as are extravagant, and those in the fulfilment of which the dreamers have no initiative, such as in the case of a sea-fight, or of things taking place far away. As regards these it is natural that the fact should stand as it does whenever a person, on mentioning something, finds the very thing mentioned come to pass. Why, indeed, should this not happen also in sleep? The probability is, rather, that many such things should happen. As, then, one’s mentioning a particular person is neither token nor cause of this person’s presenting himself, so, in the parallel instance, the dream is, to him who has seen it, neither token nor cause of its [so-called] fulfilment, but a mere coincidence.

966

Hence the fact that many dreams have no ‘fulfilment’, for coincidence do not occur according to any universal or general law.

<

div id="section2" class="section" title="2"> 2

On the whole, forasmuch as certain of the lower animals also dream, it may be concluded that dreams are not sent by God, nor are they designed for this purpose [to reveal the future]. They have a divine aspect, however, for Nature [their cause] is divinely planned, though not itself divine. A special proof [of their not being sent by God] is this: the power of foreseeing the future and of having vivid dreams is found in persons of inferior type, which implies that God does not send their dreams; but merely that all those whose physical temperament is, as it were, gar-rulous and excitable, see sights of all descriptions; for, inasmuch as they experience many movements of every kind, they just chance to have visions resembling objective facts, their luck in these matters being merely like that of persons who play at even and odd. For the principle which is expressed in the gambler’s maxim: ‘If you make many throws your luck must change,’ holds in their case also.

That many dreams have no fulfilment is not strange, for it is so too with many bodily toms and weather-signs, e.g. those of train or wind.

For if another movement occurs more influential than that from which, while [the event to which it pointed was] still future, the given token was derived, the event [to which such token pointed] does not take place. So, of the things which ought to be accomplished by human agency, many, though well-planned are by the operation of other principles more powerful [than man’s agency] brought to nought. For, speaking generally, that which was about to happen is not in every case what now is happening, nor is that which shall hereafter he identical with that which is now going to be. Still, however, we must hold that the beginnings from which, as we said, no consummation follows, are real beginnings, and these constitute natural tokens of certain events, even though the events do not come to pass.

As for [prophetic] dreams which involve not such beginnings [sc. of future events] as we have here described, but such as are extravagant in times, or places, or magnitudes; or those involving beginnings which are not extravagant in any of these respects, while yet the persons who see the dream hold not in their own hands the beginnings [of the event to which it points]: unless the foresight which such dreams give is the 967

result of pure coincidence, the following would be a better explanation of it than that proposed by Democritus, who alleges ‘images’ and

‘emanations’ as its cause. As, when something has caused motion in water or air, this [the portion of water or air], and, though the cause has ceased to operate, such motion propagates itself to a certain point, though there the prime movement is not present; just so it may well be that a movement and a consequent sense-perception should reach sleeping souls from the objects from which Democritus represents ‘images’

and ‘emanations’ coming; that such movements, in whatever way they arrive, should be more perceptible at night [than by day], because when proceeding thus in the daytime they are more liable to dissolution (since at night the air is less disturbed, there being then less wind); and that they shall be perceived within the body owing to sleep, since persons are more sensitive even to slight sensory movements when asleep than when awake. It is these movements then that cause ‘presentations’, as a result of which sleepers foresee the future even relatively to such events as those referred to above. These considerations also explain why this experience befalls commonplace persons and not the most intelligent. For it would have regularly occurred both in the daytime and to the wise had it been God who sent it; but, as we have explained the matter, it is quite natural that commonplace persons should be those who have foresight

[in dreams]. For the mind of such persons is not given to thinking, but, as it were, derelict, or totally vacant, and, when once set moving, is borne passively on in the direction taken by that which moves it. With regard to the fact that some persons who are liable to derangement have this foresight, its explanation is that their normal mental movements do not impede [the alien movements], but are beaten off by the latter. Therefore it is that they have an especially keen perception of the alien movements.

That certain persons in particular should have vivid dreams, e.g. that familiar friends should thus have foresight in a special degree respecting one another, is due to the fact that such friends are most solicitous on one another’s behalf. For as acquaintances in particular recognize and perceive one another a long way off, so also they do as regards the sensory movements respecting one another; for sensory movements which refer to persons familiarly known are themselves more familiar. Atrabilious persons, owing to their impetuosity, are, when they, as it were, shoot from a distance, expert at hitting; while, owing to their mutability, the series of movements deploys quickly before their minds. For even as the insane recite, or con over in thought, the poems of Philaegides, e.g. the Aphrodite, whose parts succeed in order of similitude, just so do they 968

[the ‘atrabilious’] go on and on stringing sensory movements together.

Moreover, owing to their aforesaid impetuosity, one movement within them is not liable to be knocked out of its course by some other movement.

The most skilful interpreter of dreams is he who has the faculty of observing resemblances. Any one may interpret dreams which are vivid and plain. But, speaking of ‘resemblances’, I mean that dream presentations are analogous to the forms reflected in water, as indeed we have already stated. In the latter case, if the motion in the water be great, the reflexion has no resemblance to its original, nor do the forms resemble the real objects. Skilful, indeed, would he be in interpreting such reflexions who could rapidly discern, and at a glance comprehend, the scattered and distorted fragments of such forms, so as to perceive that one of them represents a man, or a horse, Or anything whatever. Accordingly, in the other case also, in a similar way, some such thing as this

[blurred image] is all that a dream amounts to; for the internal movement effaces the clearness of the dream.

The questions, therefore, which we proposed as to the nature of sleep and the dream, and the cause to which each of them is due, and also as to divination as a result of dreams, in every form of it, have now been discussed.

969

On Longevity and the Shortness of Life

Translated by G. R. T. Ross

<

div class="body">

1

The reasons for some animals being long-lived and others short-lived, and, in a word, causes of the length and brevity of life call for investigation.

The necessary beginning to our inquiry is a statement of the difficulties about these points. For it is not clear whether in animals and plants universally it is a single or diverse cause that makes some to be long-lived, others short-lived. Plants too have in some cases a long life, while in others it lasts but for a year.

Further, in a natural structure are longevity and a sound constitution coincident, or is shortness of life independent of unhealthiness? Perhaps in the case of certain maladies a diseased state of the body and shortness of life are interchangeable, while in the case of others ill-health is perfectly compatible with long life.

Of sleep and waking we have already treated; about life and death we shall speak later on, and likewise about health and disease, in so far as it belongs to the science of nature to do so. But at present we have to investigate the causes of some creatures being long-lived, and others short-lived. We find this distinction affecting not only entire genera opposed as wholes to one another, but applying also to contrasted sets of individuals within the same species. As an instance of the difference applying to the genus I give man and horse (for mankind has a longer life than the horse), while within the species there is the difference between man and man; for of men also some are long-lived, others short-lived, differing from each other in respect of the different regions in which they dwell. Races inhabiting warm countries have longer life, those living in a cold climate live a shorter time. Likewise there are similar differences among individuals occupying the same locality.

<

div id="section2" class="section" title="2"> 970

2

In order to find premisses for our argument, we must answer the question, What is that which, in natural objects, makes them easily destroyed, or the reverse? Since fire and water, and whatsoever is akin thereto, do not possess identical powers they are reciprocal causes of generation and decay. Hence it is natural to infer that everything else arising from them and composed of them should share in the same nature, in all cases where things are not, like a house, a composite unity formed by the synthesis of many things.

In other matters a different account must be given; for in many things their mode of dissolution is something peculiar to themselves, e.g. in knowledge and health and disease. These pass away even though the medium in which they are found is not destroyed but continues to exist; for example, take the termination of ignorance, which is recollection or learning, while knowledge passes away into forgetfulness, or error. But accidentally the disintegration of a natural object is accompanied by the destruction of the non-physical reality; for, when the animal dies, the health or knowledge resident in it passes away too. Hence from these considerations we may draw a conclusion about the soul too; for, if the inherence of soul in body is not a matter of nature but like that of knowledge in the soul, there would be another mode of dissolution pertaining to it besides that which occurs when the body is destroyed. But since evidently it does not admit of this dual dissolution, the soul must stand in a different case in respect of its union with the body.

<

div id="section3" class="section" title="3"> 3

Perhaps one might reasonably raise the question whether there is any place where what is corruptible becomes incorruptible, as fire does in the upper regions where it meets with no opposite. Opposites destroy each other, and hence accidentally, by their destruction, whatsoever is attributed to them is destroyed. But no opposite in a real substance is accidentally destroyed, because real substance is not predicated of any subject.

Hence a thing which has no opposite, or which is situated where it has no opposite, cannot be destroyed. For what will that be which can destroy it, if destruction comes only through contraries, but no contrary to it exists either absolutely or in the particular place where it is? But perhaps this is in one sense true, in another sense not true, for it is impossible that 971

anything containing matter should not have in any sense an opposite.

Heat and straightness can be present in every part of a thing, but it is impossible that the thing should be nothing but hot or white or straight; for, if that were so, attributes would have an independent existence. Hence if, in all cases, whenever the active and the passive exist together, the one acts and the other is acted on, it is impossible that no change should occur. Further, this is so if a waste product is an opposite, and waste must always be produced; for opposition is always the source of change, and refuse is what remains of the previous opposite. But, after expelling everything of a nature actually opposed, would an object in this case also be imperishable? No, it would be destroyed by the environment.

If then that is so, what we have said sufficiently accounts for the change; but, if not, we must assume that something of actually opposite character is in the changing object, and refuse is produced.

Hence accidentally a lesser flame is consumed by a greater one, for the nutriment, to wit the smoke, which the former takes a long period to expend, is used up by the big flame quickly.

Hence [too] all things are at all times in a state of transition and are coming into being and passing away. The environment acts on them either favourably or antagonistically, and, owing to this, things that change their situation become more or less enduring than their nature warrants, but never are they eternal when they contain contrary qualities; for their matter is an immediate source of contrariety, so that if it involves locality they show change of situation, if quantity, increase and diminution, while if it involves qualitative affection we find alteration of character.

<

div id="section4" class="section" title="4"> 4

We find that a superior immunity from decay attaches neither to the largest animals (the horse has shorter life than man) nor to those that are small (for most insects live but for a year). Nor are plants as a whole less liable to perish than animals (many plants are annuals), nor have sanguineous animals the pre-eminence (for the bee is longer-lived than certain sanguineous animals). Neither is it the bloodless animals that live longest (for molluscs live only a year, though bloodless), nor terrestrial organisms (there are both plants and terrestrial animals of which a single year is the period), nor the occupants of the sea (for there we find the crustaceans and the molluscs, which are short-lived).

972

Speaking generally, the longest-lived things occur among the plants, e.g. the date-palm. Next in order we find them among the sanguineous animals rather than among the bloodless, and among those with feet rather than among the denizens of the water. Hence, taking these two characters together, the longest-lived animals fall among sanguineous animals which have feet, e.g. man and elephant. As a matter of fact also it is a general rule that the larger live longer than the smaller, for the other long-lived animals too happen to be of a large size, as are also those I have mentioned.

<

div id="section5" class="section" title="5"> 5

The following considerations may enable us to understand the reasons for all these facts. We must remember that an animal is by nature humid and warm, and to live is to be of such a constitution, while old age is dry and cold, and so is a corpse. This is plain to observation. But the material constituting the bodies of all things consists of the following-the hot and the cold, the dry and the moist. Hence when they age they must become dry, and therefore the fluid in them requires to be not easily dried up.

Thus we explain why fat things are not liable to decay. The reason is that they contain air; now air relatively to the other elements is fire, and fire never becomes corrupted.

Again the humid element in animals must not be small in quantity, for a small quantity is easily dried up. This is why both plants and animals that are large are, as a general rule, longer-lived than the rest, as was said before; it is to be expected that the larger should contain more moisture.

But it is not merely this that makes them longer lived; for the cause is twofold, to wit, the quality as well as the quantity of the fluid. Hence the moisture must be not only great in amount but also warm, in order to be neither easily congealed nor easily dried up.

It is for this reason also that man lives longer than some animals which are larger; for animals live longer though there is a deficiency in the amount of their moisture, if the ratio of its qualitative superiority exceeds that of its quantitative deficiency.

In some creatures the warm element is their fatty substance, which prevents at once desiccation and congelation; but in others it assumes a different flavour. Further, that which is designed to be not easily destroyed should not yield waste products. Anything of such a nature causes death either by disease or naturally, for the potency of the waste 973

product works adversely and destroys now the entire constitution, now a particular member.

This is why salacious animals and those abounding in seed age quickly; the seed is a residue, and further, by being lost, it produces dryness. Hence the mule lives longer than either the horse or the ass from which it sprang, and females live longer than males if the males are salacious. Accordingly cock-sparrows have a shorter life than the females.

Again males subject to great toil are short-lived and age more quickly owing to the labour; toil produces dryness and old age is dry. But by natural constitution and as a general rule males live longer than females, and the reason is that the male is an animal with more warmth than the female.

The same kind of animals are longer-lived in warm than in cold climates for the same reason, on account of which they are of larger size.

The size of animals of cold constitution illustrates this particularly well, and hence snakes and lizards and scaly reptiles are of great size in warm localities, as also are testacea in the Red Sea: the warm humidity there is the cause equally of their augmented size and of their life. But in cold countries the humidity in animals is more of a watery nature, and hence is readily congealed. Consequently it happens that animals with little or no blood are in northerly regions either entirely absent (both the land animals with feet and the water creatures whose home is the sea) or, when they do occur, they are smaller and have shorter life; for the frost prevents growth.

Both plants and animals perish if not fed, for in that case they consume themselves; just as a large flame consumes and burns up a small one by using up its nutriment, so the natural warmth which is the primary cause of digestion consumes the material in which it is located.

Water animals have a shorter life than terrestrial creatures, not strictly because they are humid, but because they are watery, and watery moisture is easily destroyed, since it is cold and readily congealed. For the same reason bloodless animals perish readily unless protected by great size, for there is neither fatness nor sweetness about them. In animals fat is sweet, and hence bees are longer-lived than other animals of larger size.

<

div id="section6" class="section" title="6"> 974

6

It is amongst the plants that we find the longest life-more than among the animals, for, in the first place, they are less watery and hence less easily frozen. Further they have an oiliness and a viscosity which makes them retain their moisture in a form not easily dried up, even though they are dry and earthy.

But we must discover the reason why trees are of an enduring constitution, for it is peculiar to them and is not found in any animals except the insects.

Plants continually renew themselves and hence last for a long time.

New shoots continually come and the others grow old, and with the roots the same thing happens. But both processes do not occur together.

Rather it happens that at one time the trunk and the branches alone die and new ones grow up beside them, and it is only when this has taken place that the fresh roots spring from the surviving part. Thus it continues, one part dying and the other growing, and hence also it lives a long time.

There is a similarity, as has been already said, between plants and insects, for they live, though divided, and two or more may be derived from a single one. Insects, however, though managing to live, are not able to do so long, for they do not possess organs; nor can the principle resident in each of the separated parts create organs. In the case of a plant, however, it can do so; every part of a plant contains potentially both root and stem. Hence it is from this source that issues that continued growth when one part is renewed and the other grows old; it is practically a case of longevity. The taking of slips furnishes a similar instance, for we might say that, in a way, when we take a slip the same thing happens; the shoot cut off is part of the plant. Thus in taking slips this perpetuation of life occurs though their connexion with the plant is severed, but in the former case it is the continuity that is operative. The reason is that the life principle potentially belonging to them is present in every part.

Identical phenomena are found both in plants and in animals. For in animals the males are, in general, the longer-lived. They have their upper parts larger than the lower (the male is more of the dwarf type of build than the female), and it is in the upper part that warmth resides, in the lower cold. In plants also those with great heads are longer-lived, and such are those that are not annual but of the tree-type, for the roots are the head and upper part of a plant, and among the annuals growth occurs in the direction of their lower parts and the fruit.

975

These matters however will be specially investigated in the work On Plants. But this is our account of the reasons for the duration of life and for short life in animals. It remains for us to discuss youth and age, and life and death. To come to a definite understanding about these matters would complete our course of study on animals.

976

On Youth, Old Age, Life and Death, and Respiration Translated by G. R. T. Ross

<

div class="chapter">

1

We must now treat of youth and old age and life and death. We must probably also at the same time state the causes of respiration as well, since in some cases living and the reverse depend on this.

We have elsewhere given a precise account of the soul, and while it is clear that its essential reality cannot be corporeal, yet manifestly it must exist in some bodily part which must be one of those possessing control over the members. Let us for the present set aside the other divisions or faculties of the soul (whichever of the two be the correct name). But as to being what is called an animal and a living thing, we find that in all beings endowed with both characteristics (viz. being an animal and being alive) there must be a single identical part in virtue of which they live and are called animals; for an animal qua animal cannot avoid being alive. But a thing need not, though alive, be animal, for plants live without having sensation, and it is by sensation that we distinguish animal from what is not animal.

This organ, then, must be numerically one and the same and yet possess multiple and disparate aspects, for being animal and living are not identical. Since then the organs of special sensation have one common organ in which the senses when functioning must meet, and this must be situated midway between what is called before and behind (we call

‘before’ the direction from which sensation comes, ‘behind’ the opposite), further, since in all living things the body is divided into upper and lower (they all have upper and lower parts, so that this is true of plants as well), clearly the nutritive principle must be situated midway between these regions. That part where food enters we call upper, considering it by itself and not relatively to the surrounding universe, while downward is that part by which the primary excrement is discharged.

Plants are the reverse of animals in this respect. To man in particular among the animals, on account of his erect stature, belongs the characteristic of having his upper parts pointing upwards in the sense in which that applies to the universe, while in the others these are in an intermediate position. But in plants, owing to their being stationary and drawing 977

their sustenance from the ground, the upper part must always be down; for there is a correspondence between the roots in a plant and what is called the mouth in animals, by means of which they take in their food, whether the source of supply be the earth or each other’s bodies.

2

All perfectly formed animals are to be divided into three parts, one that by which food is taken in, one that by which excrement is discharged, and the third the region intermediate between them. In the largest animals this latter is called the chest and in the others something corresponding; in some also it is more distinctly marked off than in others. All those also that are capable of progression have additional members subservient to this purpose, by means of which they bear the whole trunk, to wit legs and feet and whatever parts are possessed of the same powers. Now it is evident both by observation and by inference that the source of the nutritive soul is in the midst of the three parts. For many animals, when either part-the head or the receptacle of the food-is cut off, retain life in that member to which the middle remains attached. This can be seen to occur in many insects, e.g. wasps and bees, and many animals also besides insects can, though divided, continue to live by means of the part connected with nutrition.

While this member is indeed in actuality single, yet potentially it is multiple, for these animals have a constitution similar to that of Plants; plants when cut into sections continue to live, and a number of trees can be derived from one single source. A separate account will be given of the reason why some plants cannot live when divided, while others can be propagated by the taking of slips. In this respect, however, plants and insects are alike.

It is true that the nutritive soul, in beings possessing it, while actually single must be potentially plural. And it is too with the principle of sensation, for evidently the divided segments of these animals have sensation. They are unable, however, to preserve their constitution, as plants can, not possessing the organs on which the continuance of life depends, for some lack the means for seizing, others for receiving their food; or again they may be destitute of other organs as well.

Divisible animals are like a number of animals grown together, but animals of superior construction behave differently because their constitution is a unity of the highest possible kind. Hence some of the organs on division display slight sensitiveness because they retain some psychical susceptibility; the animals continue to move after the vitals have been 978

abstracted: tortoises, for example, do so even after the heart has been removed.

3

The same phenomenon is evident both in plants and in animals, and in plants we note it both in their propagation by seed and in grafts and cuttings. Genesis from seeds always starts from the middle. All seeds are bi-valvular, and the place of junction is situated at the point of attachment (to the plant), an intermediate part belonging to both halves. It is from this part that both root and stem of growing things emerge; the startingpoint is in a central position between them. In the case of grafts and cuttings this is particularly true of the buds; for the bud is in a way the starting-point of the branch, but at the same time it is in a central position. Hence it is either this that is cut off, or into this that the new shoot is inserted, when we wish either a new branch or a new root to spring from it; which proves that the point of origin in growth is intermediate between stem and root.

Likewise in sanguineous animals the heart is the first organ developed; this is evident from what has been observed in those cases where observation of their growth is possible. Hence in bloodless animals also what corresponds to the heart must develop first. We have a