The Complete Aristotle by Aristotle - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

<

div id="section106" class="section" title="5"> 5

The vulture builds its nest on inaccessible cliffs; for which reason its nest and young are rarely seen. And therefore Herodorus, father of Bryson the Sophist, declares that vultures belong to some foreign country unknown to us, stating as a proof of the assertion that no one has ever seen a vulture’s nest, and also that vultures in great numbers make a sudden appearance in the rear of armies. However, difficult as it is to get a sight of it, a vulture’s nest has been seen. The vulture lays two eggs.

(Carnivorous birds in general are observed to lay but once a year. The swallow is the only carnivorous bird that builds a nest twice. If you prick out the eyes of swallow chicks while they are yet young, the birds will get well again and will see by and by.)

<

div id="section107" class="section" title="6"> 1155

6

The eagle lays three eggs and hatches two of them, as it is said in the verses ascribed to Musaeus:

<

div class="quote">

That lays three, hatches two, and cares for one.

This is the case in most instances, though occasionally a brood of three has been observed. As the young ones grow, the mother becomes wearied with feeding them and extrudes one of the pair from the nest. At the same time the bird is said to abstain from food, to avoid harrying the young of wild animals. That is to say, its wings blanch, and for some days its talons get turned awry. It is in consequence about this time cross-tempered to its own young. The phene is said to rear the young one that has been expelled the nest. The eagle broods for about thirty days.

The hatching period is about the same for the larger birds, such as the goose and the great bustard; for the middle-sized birds it extends over about twenty days, as in the case of the kite and the hawk. The kite in general lays two eggs, but occasionally rears three young ones. The so-called aegolius at times rears four. It is not true that, as some aver, the raven lays only two eggs; it lays a larger number. It broods for about twenty days and then extrudes its young. Other birds perform the same operation; at all events mother birds that lay several eggs often extrude one of their young.

Birds of the eagle species are not alike in the treatment of their young.

The white-tailed eagle is cross, the black eagle is affectionate in the feeding of the young; though, by the way, all birds of prey, when their brood is rather forward in being able to fly, beat and extrude them from the nest. The majority of birds other than birds of prey, as has been said, also act in this manner, and after feeding their young take no further care of them; but the crow is an exception. This bird for a considerable time takes charge of her young; for, even when her young can fly, she flies alongside of them and supplies them with food.

<

div id="section108" class="section" title="7"> 7

The cuckoo is said by some to be a hawk transformed, because at the time of the cuckoo’s coming, the hawk, which it resembles, is never seen; 1156

and indeed it is only for a few days that you will see hawks about when the cuckoo’s note sounds early in the season. The cuckoo appears only for a short time in summer, and in winter disappears. The hawk has crooked talons, which the cuckoo has not; neither with regard to the head does the cuckoo resemble the hawk. In point of fact, both as regards the head and the claws it more resembles the pigeon. However, in colour and in colour alone it does resemble the hawk, only that the markings of the hawk are striped, and of the cuckoo mottled. And, by the way, in size and flight it resembles the smallest of the hawk tribe, which bird disappears as a rule about the time of the appearance of the cuckoo, though the two have been seen simultaneously. The cuckoo has been seen to be preyed on by the hawk; and this never happens between birds of the same species. They say no one has ever seen the young of the cuckoo.

The bird eggs, but does not build a nest. Sometimes it lays its eggs in the nest of a smaller bird after first devouring the eggs of this bird; it lays by preference in the nest of the ringdove, after first devouring the eggs of the pigeon. (It occasionally lays two, but usually one.) It lays also in the nest of the hypolais, and the hypolais hatches and rears the brood. It is about this time that the bird becomes fat and palatable. (The young of hawks also get palatable and fat. One species builds a nest in the wilder-ness and on sheer and inaccessible cliffs.)

<

div id="section109" class="section" title="8"> 8

With most birds, as has been said of the pigeon, the hatching is carried on by the male and the female in turns: with some birds, however, the male only sits long enough to allow the female to provide herself with food. In the goose tribe the female alone incubates, and after once sitting on the eggs she continues brooding until they are hatched.

The nests of all marsh-birds are built in districts fenny and well supplied with grass; consequently, the mother-bird while sitting quiet on her eggs can provide herself with food without having to submit to absolute fasting.

With the crow also the female alone broods, and broods throughout the whole period; the male bird supports the female, bringing her food and feeding her. The female of the ring-dove begins to brood in the afternoon and broods through the entire night until breakfast-time of the following day; the male broods during the rest of the time. Partridges build a nest in two compartments; the male broods on the one and the female 1157

on the other. After hatching, each of the parent birds rears its brood. But the male, when he first takes his young out of the nest, treads them.

<

div id="section110" class="section" title="9"> 9

Peafowl live for about twenty-five years, breed about the third year, and at the same time take on their spangled plumage. They hatch their eggs within thirty days or rather more. The peahen lays but once a year, and lays twelve eggs, or may be a slightly lesser number: she does not lay all the eggs there and then one after the other, but at intervals of two or three days. Such as lay for the first time lay about eight eggs. The peahen lays wind-eggs. They pair in the spring; and laying begins immediately after pairing. The bird moults when the earliest trees are shedding their leaves, and recovers its plumage when the same trees are recovering their foliage. People that rear peafowl put the eggs under the barn-door hen, owing to the fact that when the peahen is brooding over them the peacock attacks her and tries to trample on them; owing to this circumstance some birds of wild varieties run away from the males and lay their eggs and brood in solitude. Only two eggs are put under a barn-door hen, for she could not brood over and hatch a large number. They take every precaution, by supplying her with food, to prevent her going off the eggs and discontinuing the brooding.

With male birds about pairing time the testicles are obviously larger than at other times, and this is conspicuously the case with the more salacious birds, such as the barn-door cock and the cock partridge; the peculiarity is less conspicuous in such birds as are intermittent in regard to pairing.

<

div id="section111" class="section" title="10"> 10

So much for the conception and generation of birds.

It has been previously stated that fishes are not all oviparous. Fishes of the cartilaginous genus are viviparous; the rest are oviparous. And cartilaginous fishes are first oviparous internally and subsequently viviparous; they rear the embryos internally, the batrachus or fishing-frog being an exception.

1158

Fishes also, as was above stated, are provided with wombs, and wombs of diverse kinds. The oviparous genera have wombs bifurcate in shape and low down in position; the cartilaginous genus have wombs shaped like those of O birds. The womb, however, in the cartilaginous fishes differs in this respect from the womb of birds, that with some cartilaginous fishes the eggs do not settle close to the diaphragm but middle-ways along the backbone, and as they grow they shift their position.

The egg with all fishes is not of two colours within but is of even hue; and the colour is nearer to white than to yellow, and that both when the young is inside it and previously as well.

Development from the egg in fishes differs from that in birds in this respect, that it does not exhibit that one of the two navel-strings that leads off to the membrane that lies close under the shell, while it does exhibit that one of the two that in the case of birds leads off to the yolk. In a general way the rest of the development from the egg onwards is identical in birds and fishes. That is to say, development takes place at the upper part of the egg, and the veins extend in like manner, at first from the heart; and at first the head, the eyes, and the upper parts are largest; and as the creature grows the egg-substance decreases and eventually disappears, and becomes absorbed within the embryo, just as takes place with the yolk in birds.

The navel-string is attached a little way below the aperture of the belly. When the creatures are young the navel-string is long, but as they grow it diminishes in size; at length it gets small and becomes incorporated, as was described in the case of birds. The embryo and the egg are enveloped by a common membrane, and just under this is another membrane that envelops the embryo by itself; and in between the two membranes is a liquid. The food inside the stomach of the little fishes resembles that inside the stomach of young chicks, and is partly white and partly yellow.

As regards the shape of the womb, the reader is referred to my treatise on Anatomy. The womb, however, is diverse in diverse fishes, as for instance in the sharks as compared one with another or as compared with the skate. That is to say, in some sharks the eggs adhere in the middle of the womb round about the backbone, as has been stated, and this is the case with the dog-fish; as the eggs grow they shift their place; and since the womb is bifurcate and adheres to the midriff, as in the rest of similar creatures, the eggs pass into one or other of the two compartments. This womb and the womb of the other sharks exhibit, as you go a little way 1159

off from the midriff, something resembling white breasts, which never make their appearance unless there be conception.

Dog-fish and skate have a kind of egg-shell, in the which is found an egg-like liquid. The shape of the egg-shell resembles the tongue of a bag-pipe, and hair-like ducts are attached to the shell. With the dog-fish which is called by some the ‘dappled shark’, the young are born when the shell-formation breaks in pieces and falls out; with the ray, after it has laid the egg the shell-formation breaks up and the young move out.

The spiny dog-fish has its close to the midriff above the breast like formations; when the egg descends, as soon as it gets detached the young is born. The mode of generation is the same in the case of the fox-shark.

The so-called smooth shark has its eggs in betwixt the wombs like the dog-fish; these eggs shift into each of the two horns of the womb and descend, and the young develop with the navel-string attached to the womb, so that, as the egg-substance gets used up, the embryo is sustained to all appearance just as in the case of quadrupeds. The navel-string is long and adheres to the under part of the womb (each navel-string being attached as it were by a sucker), and also to the centre of the embryo in the place where the liver is situated. If the embryo be cut open, even though it has the egg-substance no longer, the food inside is egg-like in appearance. Each embryo, as in the case of quadrupeds, is provided with a chorion and separate membranes. When young the embryo has its head upwards, but downwards when it gets strong and is completed in form. Males are generated on the left-hand side of the womb, and females on the right-hand side, and males and females on the same side together. If the embryo be cut open, then, as with quadrupeds, such internal organs as it is furnished with, as for instance the liver, are found to be large and supplied with blood.

All cartilaginous fishes have at one and the same time eggs above close to the midriff (some larger, some smaller), in considerable numbers, and also embryos lower down. And this circumstance leads many to suppose that fishes of this species pair and bear young every month, inasmuch as they do not produce all their young at once, but now and again and over a lengthened period. But such eggs as have come down below within the womb are simultaneously ripened and completed in growth.

Dog-fish in general can extrude and take in again their young, as can also the angel-fish and the electric ray-and, by the way, a large electric ray has been seen with about eighty embryos inside it-but the spiny dogfish is an exception to the rule, being prevented by the spine of the young fish from so doing. Of the flat cartilaginous fish, the trygon and 1160

the ray cannot extrude and take in again in consequence of the roughness of the tails of the young. The batrachus or fishing-frog also is unable to take in its young owing to the size of the head and the prickles; and, by the way, as was previously remarked, it is the only one of these fishes that is not viviparous.

So much for the varieties of the cartilaginous species and for their modes of generation from the egg.

<

div id="section112" class="section" title="11"> 11

At the breeding season the sperm-ducts of the male are filled with sperm, so much so that if they be squeezed the sperm flows out spontaneously as a white fluid; the ducts are bifurcate, and start from the midriff and the great vein. About this period the sperm-ducts of the male are quite distinct (from the womb of the female) but at any other than the actual breeding time their distinctness is not obvious to a non-expert. The fact is that in certain fishes at certain times these organs are imperceptible, as was stated regarding the testicles of birds.

Among other distinctions observed between the thoric ducts and the womb-ducts is the circumstance that the thoric ducts are attached to the loins, while the womb-ducts move about freely and are attached by a thin membrane. The particulars regarding the thoric ducts may be studied by a reference to the diagrams in my treatise on Anatomy.

Cartilaginous fishes are capable of superfoetation, and their period of gestation is six months at the longest. The so-called starry dogfish bears young the most frequently; in other words it bears twice a month. The breeding season is in the month of Maemacterion. The dog-fish as a general rule bear twice in the year, with the exception of the little dog-fish, which bears only once a year. Some of them bring forth in the springtime. The rhine, or angel-fish, bears its first brood in the springtime, and its second in the autumn, about the winter setting of the Pleiads; the second brood is the stronger of the two. The electric ray brings forth in the late autumn.

Cartilaginous fishes come out from the main seas and deep waters towards the shore and there bring forth their young, and they do so for the sake of warmth and by way of protection for their young.

Observations would lead to the general rule that no one variety of fish pairs with another variety. The angel-fish, however, and the batus or skate appear to pair with one another; for there is a fish called the 1161

rhinobatus, with the head and front parts of the skate and the after parts of the rhine or angel-fish, just as though it were made up of both fishes together.

Sharks then and their congeners, as the fox-shark and the dog-fish, and the flat fishes, such as the electric ray, the ray, the smooth skate, and the trygon, are first oviparous and then viviparous in the way above mentioned, (as are also the saw-fish and the ox-ray.)

<

div id="section113" class="section" title="12"> 12

The dolphin, the whale, and all the rest of the Cetacea, all, that is to say, that are provided with a blow-hole instead of gills, are viviparous.

That is to say, no one of all these fishes is ever seen to be supplied with eggs, but directly with an embryo from whose differentiation comes the fish, just as in the case of mankind and the viviparous quadrupeds.

The dolphin bears one at a time generally, but occasionally two. The whale bears one or at the most two, generally two. The porpoise in this respect resembles the dolphin, and, by the way, it is in form like a little dolphin, and is found in the Euxine; it differs, however, from the dolphin as being less in size and broader in the back; its colour is leaden-black.

Many people are of opinion that the porpoise is a variety of the dolphin.

All creatures that have a blow-hole respire and inspire, for they are provided with lungs. The dolphin has been seen asleep with his nose above water, and when asleep he snores.

The dolphin and the porpoise are provided with milk, and suckle their young. They also take their young, when small, inside them. The young of the dolphin grow rapidly, being full grown at ten years of age. Its period of gestation is ten months. It brings forth its young summer, and never at any other season; (and, singularly enough, under the Dogstar it disappears for about thirty days). Its young accompany it for a considerable period; and, in fact, the creature is remarkable for the strength of its parental affection. It lives for many years; some are known to have lived for more than twenty-five, and some for thirty years; the fact is fishermen nick their tails sometimes and set them adrift again, and by this expedient their ages are ascertained.

The seal is an amphibious animal: that is to say, it cannot take in water, but breathes and sleeps and brings forth on dry land-only close to the shore-as being an animal furnished with feet; it spends, however, the greater part of its time in the sea and derives its food from it, so that it 1162

must be classed in the category of marine animals. It is viviparous by immediate conception and brings forth its young alive, and exhibits an after-birth and all else just like a ewe. It bears one or two at a time, and three at the most. It has two teats, and suckles its young like a quadruped. Like the human species it brings forth at all seasons of the year, but especially at the time when the earliest kids are forthcoming. It conducts its young ones, when they are about twelve days old, over and over again during the day down to the sea, accustoming them by slow degrees to the water. It slips down steep places instead of walking, from the fact that it cannot steady itself by its feet. It can contract and draw itself in, for it is fleshy and soft and its bones are gristly. Owing to the flabbiness of its body it is difficult to kill a seal by a blow, unless you strike it on the temple. It looks like a cow. The female in regard to its genital organs resembles the female of the ray; in all other respects it resembles the female of the human species.

So much for the phenomena of generation and of parturition in animals that live in water and are viviparous either internally or externally.

<

div id="section114" class="section" title="13"> 13

Oviparous fishes have their womb bifurcate and placed low down, as was said previously-and, by the way, all scaly fish are oviparous, as the basse, the mullet, the grey mullet, and the etelis, and all the so-called white-fish, and all the smooth or slippery fish except the eel-and their roe is of a crumbling or granular substance. This appearance is due to the fact that the whole womb of such fishes is full of eggs, so that in little fishes there seem to be only a couple of eggs there; for in small fishes the womb is indistinguishable, from its diminutive size and thin contexture.

The pairing of fishes has been discussed previously.

Fishes for the most part are divided into males and females, but one is puzzled to account for the erythrinus and the channa, for specimens of these species are never caught except in a condition of pregnancy.

With such fish as pair, eggs are the result of copulation, but such fish have them also without copulation; and this is shown in the case of some river-fish, for the minnow has eggs when quite small,-almost, one may say, as soon as it is born. These fishes shed their eggs little by little, and, as is stated, the males swallow the greater part of them, and some portion of them goes to waste in the water; but such of the eggs as the female deposits on the spawning beds are saved. If all the eggs were 1163

preserved, each species would be infinite in number. The greater number of these eggs so deposited are not productive, but only those over which the male sheds the milt or sperm; for when the female has laid her eggs, the male follows and sheds its sperm over them, and from all the eggs so besprinkled young fishes proceed, while the rest are left to their fate.

The same phenomenon is observed in the case of molluscs also; for in the case of the cuttlefish or sepia, after the female has deposited her eggs, the male besprinkles them. It is highly probable that a similar phenomenon takes place in regard to molluscs in general, though up to the present time the phenomenon has been observed only in the case of the cuttlefish.

Fishes deposit their eggs close in to shore, the goby close to stones; and, by the way, the spawn of the goby is flat and crumbly. Fish in general so deposit their eggs; for the water close in to shore is warm and is better supplied with food than the outer sea, and serves as a protection to the spawn against the voracity of the larger fish. And it is for this reason that in the Euxine most fishes spawn near the mouth of the river Thermodon, because the locality is sheltered, genial, and supplied with fresh water.

Oviparous fish as a rule spawn only once a year. The little phycis or black goby is an exception, as it spawns twice; the male of the black goby differs from the female as being blacker and having larger scales.

Fishes then in general produce their young by copulation, and lay their eggs; but the pipefish, as some call it, when the time of parturition arrives, bursts in two, and the eggs escape out. For the fish has a diaphysis or cloven growth under the belly and abdomen (like the blind snakes), and, after it has spawned by the splitting of this diaphysis, the sides of the split grow together again.

Development from the egg takes place similarly with fishes that are oviparous internally and with fishes that are oviparous externally; that is to say, the embryo comes at the upper end of the egg and is enveloped in a membrane, and the eyes, large and spherical, are the first organs visible. From this circumstance it is plain that the assertion is untenable which is made by some writers, to wit, that the young of oviparous fishes are generated like the grubs of worms; for the opposite phenomena are observed in the case of these grubs, in that their lower extremities are the larger at the outset, and that the eyes and the head appear later on. After the egg has been used up, the young fishes are like tadpoles in shape, and at first, without taking any nutriment, they grow by 1164

sustenance derived from the juice oozing from the egg; by and by, they are nourished up to full growth by the river-waters.

When the Euxine is ‘purged’ a substance called phycus is carried into the Hellespont, and this substance is of a pale yellow colour. Some writers aver that it is the flower of the phycus, from which rouge is made; it comes at the beginning of summer. Oysters and the small fish of these localities feed on this substance, and some of the inhabitants of these maritime districts say that the purple murex derives its peculiar colour from it.

<

div id="section115" class="section" title="14"> 14

Marsh-fishes and river-fishes conceive at the age of five months as a general rule, and deposit their spawn towards the close of the year without exception. And with these fishes, like as with the marine fishes, the female does not void all her eggs at one time, nor the male his sperm; but they are at all times more or less provided, the female with eggs, and the male with sperm. The-carp spawns as the seasons come round, five or six times, and follows in spawning the rising of the greater constellations. The chalcis spawns three times, and the other fishes once only in the year. They all spawn in pools left by the overflowing of rivers, and near to reedy places in marshes; as for instance the phoxinus or minnow and the perch.

The glanis or sheat-fish and the perch deposit their spawn in one continuous string, like the frog; so continuous, in fact, is the convoluted spawn of the perch that, by reason of its smoothness, the fishermen in the marshes can unwind it off the reeds like threads off a reel. The larger individuals of the sheat-fish spawn in deep waters, some in water of a fathom’s depth, the smaller in shallower water, generally close to the roots of the willow or of some other tree, or close to reeds or to moss. At times these fishes intertwine with one another, a big with a little one, and bring into juxtaposition the ducts-which some writers designate as navels-at the point where they emit the generative products and discharge the egg in the case of the female and the milt in the case of the male. Such eggs as are besprinkled with the milt grow, in a day or thereabouts, whiter and larger, and in a little while afterwards the fish’s eyes become visible for these organs in all fishes, as for that matter in all other animals, are early conspicuous and seem disproportionately big. But such eggs as the milt fails to touch remain, as with marine fishes, useless 1165

and infertile. From the fertile eggs, as the little fish grow, a kind of sheath detaches itself; this is a membrane that envelops the egg and the young fish. When the milt has mingled with the eggs, the resulting product becomes very sticky or viscous, and adheres to the roots of trees or wherever it may have been laid. The male keeps on guard at the principal spawning-place, and the female after spawning goes away.

In the case of the sheat-fish the growth from the egg is exceptionally slow, and, in consequence, the male has to keep watch for forty or fifty days to prevent the-spawn being devoured by such little fishes as chance to come by. Next in point of slowness is the generation of the carp. As with fishes in general, so even with these, the spawn thus protected disappears and gets lost rapidly.

In the case of some of the smaller fishes when they are only three days old young fishes are generated. Eggs touched by the male sperm take on increase both the same day and also later. The egg of the sheat-fish is as big as a vetch-seed; the egg of the carp and of the carp-species as big as a millet-seed.

These fishes then spawn and generate in the way here described. The chalcis, however, spawns in deep water in dense shoals of fish; and the so-called tilon spawns near to beaches in sheltered spots in shoals likewise. The carp, the baleros, and fishes in general push eagerly into the shallows for the purpose of spawning, and very often thirteen or fourteen males are seen following a single female. When the female deposits her spawn and departs, the males follow on and shed the milt. The greater portion of the spawn gets wasted; because, owing to the fact that the female moves about while spawning, the spawn scatters, or so much of it as is caught in the stream and does not get entangled with some rubbish.

For, with the exception of the sheatfish, no fish keeps on guard; unless, by the way, it be the carp, which is said to remain on guard, if it so happen that its spawn lies in a solid mass.

All male fishes are supplied with milt, excepting the eel: with the eel, the male is devoid of milt, and the female of spawn. The mullet goes up from the sea to marshes and rivers; the eels, on the contrary, make their way down from the marshes and rivers to the sea.

<

div id="section116" class="section" title="15"> 15

The great majority of fish, then, as has been stated, proceed from eggs.

However, there are some fish that proceed from mud and sand, even of 1166

those kinds that proceed also from pairing and the egg. This occurs in ponds here and there, and especially in a pond in the neighbourhood of Cnidos. This pond, it is said, at one time ran dry about the rising of the Dogstar, and the mud had all dried up; at the first fall of the rains there was a show of water in the pond, and on the first appearance of the water shoals of tiny fish were found in the pond. The fish in question was a kind of mullet, one which does not proceed from normal pairing, about the size of a small sprat, and not one of these fishes was provided with either spawn or milt. There are found also in Asia Minor, in rivers not communicating with the sea, little fishes like whitebait, differing from the small fry found near Cnidos but found under similar circumstances.

Some writers actually aver that mullet all grow spontaneously. In this assertion they are mistaken, for the female of the fish is found provided with spawn, and the male with milt. However, there is