The Complete Aristotle by Aristotle - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

Some at any rate of the animals with watery blood have a keener intellect than those whose blood is of an earthier nature. This is due not to the coldness of their blood, but rather to its thinness and purity; neither of which qualities belongs to the earthy matter. For the thinner and purer its fluid is, the more easily affected is an animal’s sensibility. Thus it is that some bloodless animals, notwithstanding their want of blood, are yet more intelligent than some among the sanguineous kinds. Such for instance, as already said, is the case with the bee and the tribe of ants, and whatever other animals there may be of a like nature. At the same time too great an excess of water makes animals timorous. For fear chills the body; so that in animals whose heart contains so watery a mixture the way is prepared for the operation of this emotion. For water is congealed by cold. This also explains why bloodless animals are, as a general rule, more timorous than such as have blood, so that they remain motionless, when frightened, and discharge their excretions, and in some instances change colour. Such animals, on the other hand, as have thick and abundant fibres in their blood are of a more earthy nature, and of a choleric temperament, and liable to bursts of passion. For anger is productive of heat; and solids, when they have been made hot, give off more heat than fluids. The fibres therefore, being earthy and solid, are turned into so many hot embers in the blood, like the embers in a vapour-bath, and cause ebullition in the fits of passion.

This explains why bulls and boars are so choleric and so passionate.

For their blood is exceedingly rich in fibres, and the bull’s at any rate coagulates more rapidly than that of any other animal. If these fibres, that is to say if the earthy constituents of which we are speaking, are taken out of the blood, the fluid that remains behind will no longer coagulate; just as the watery residue of mud will not coagulate after removal of the earth. But if the fibres are left the fluid coagulates, as also does mud, under the influence of cold. For when the heat is expelled by the cold, the fluid, as has been already stated, passes off with it by evaporation, and the residue is dried up and solidified, not by heat but by cold. So long, however, as the blood is in the body, it is kept fluid by animal heat.

The character of the blood affects both the temperament and the sensory faculties of animals in many ways. This is indeed what might reasonably be expected, seeing that the blood is the material of which the whole body is made. For nutriment supplies the material, and the blood is the 1318

ultimate nutriment. It makes then a considerable difference whether the blood be hot or cold, thin or thick, turbid or clear.

The watery part of the blood is serum; and it is watery, either owing to its not being yet concocted, or owing to its having become corrupted; so that one part of the serum is the resultant of a necessary process, while another part is material intended to serve for the formation of the blood.

5

The differences between lard and suet correspond to differences of blood. For both are blood concocted into these forms as a result of abundant nutrition, being that surplus blood that is not expended on the fleshy part of the body, and is of an easily concocted and fatty character.

This is shown by the unctuous aspect of these substances; for such unctuous aspect in fluids is due to a combination of air and fire. It follows from what has been said that no non-sanguineous animals have either lard or suet; for they have no blood. Among sanguineous animals those whose blood is dense have suet rather than lard. For suet is of an earthy nature, that is to say, it contains but a small proportion of water and is chiefly composed of earth; and this it is that makes it coagulate, just as the fibrous matter of blood coagulates, or broths which contain such fibrous matter. Thus it is that in those horned animals that have no front teeth in the upper jaw the fat consists of suet. For the very fact that they have horns and huckle-bones shows that their composition is rich in this earthy element; for all such appurtenances are solid and earthy in character. On the other hand in those hornless animals that have front teeth in both jaws, and whose feet are divided into toes, there is no suet, but in its place lard; and this, not being of an earthy character, neither coagulates nor dries up into a friable mass.

Both lard and suet when present in moderate amount are beneficial; for they contribute to health and strength, while they are no hindrance to sensation. But when they are present in great excess, they are injurious and destructive. For were the whole body formed of them it would perish. For an animal is an animal in virtue of its sensory part, that is in virtue of its flesh, or of the substance analogous to flesh. But the blood, as before stated, is not sensitive; as therefore is neither lard nor suet, seeing that they are nothing but concocted blood. Were then the whole body composed of these substances, it would be utterly without sensation.

Such animals, again, as are excessively fat age rapidly. For so much of their blood is used in forming fat, that they have but little left; and when there is but little blood the way is already open for decay. For decay may 1319

be said to be deficiency of blood, the scantiness of which renders it liable, like all bodies of small bulk, to be injuriously affected by any chance excess of heat or cold. For the same reason fat animals are less prolific than others. For that part of the blood which should go to form semen and seed is used up in the production of lard and suet, which are nothing but concocted blood; so that in these animals there is either no reproductive excretion at all, or only a scanty amount.

6

So much then of blood and serum, and of lard and suet. Each of these has been described, and the purposes told for which they severally exist.

The marrow also is of the nature of blood, and not, as some think, the germinal force of the semen. That this is the case is quite evident in very young animals. For in the embryo the marrow of the bones has a bloodlike appearance, which is but natural, seeing that the parts are all constructed out of blood, and that it is on blood that the embryo is nourished. But, as the young animal grows up and ripens into maturity, the marrow changes its colour, just as do the external parts and the viscera.

For the viscera also in animals, so long as they are young, have each and all a blood-like look, owing to the large amount of this fluid which they contain.

The consistency of the marrow agrees with that of the fat. For when the fat consists of lard, then the marrow also is unctuous and lard-like; but when the blood is converted by concoction into suet, and does not assume the form of lard, then the marrow also has a suety character. In those animals, therefore, that have horns and are without upper front teeth, the marrow has the character of suet; while it takes the form of lard in those that have front teeth in both jaws, and that also have the foot divided into toes. What has ben said hardly applies to the spinal marrow. For it is necessary that this shall be continuous and extend without break through the whole backbone, inasmuch as this bone consists of separate vertebrae. But were the spinal marrow either of unctuous fat or of suet, it could not hold together in such a continuous mass as it does, but would either be too fluid or too frangible.

There are some animals that can hardly be said to have any marrow.

These are those whose bones are strong and solid, as is the case with the lion. For in this animal the marrow is so utterly insignificant that the bones look as though they had none at all. However, as it is necessary that animals shall have bones or something analogous to them, such as the fish-spines of water-animals, it is also a matter of necessity that some 1320

of these bones shall contain marrow; for the substance contained within the bones is the nutriment out of which these are formed. Now the universal nutriment, as already stated, is blood; and the blood within the bone, owing to the heat which is developed in it from its being thus surrounded, undergoes concoction, and self-concocted blood is suet or lard; so that it is perfectly intelligible how the marrow within the bone comes to have the character of these substances. So also it is easy to understand why, in those animals that have strong and compact bones, some of these should be entirely void of marrow, while the rest contain but little of it; for here the nutriment is spent in forming the bones.

Those animals that have fish-spines in place of bones have no other marrow than that of the chine. For in the first place they have naturally but a small amount of blood; and secondly the only hollow fish-spine is that of the chine. In this then marrow is formed; this being the only spine in which there is space for it, and, moreover, being the only one which owing to its division into parts requires a connecting bond. This too is the reason why the marrow of the chine, as already mentioned, is somewhat different from that of other bones. For, having to act the part of a clasp, it must be of glutinous character, and at the same time sinewy so as to admit of stretching.

Such then are the reasons for the existence of marrow, in those animals that have any, and such its nature. It is evidently the surplus of the sanguineous nutriment apportioned to the bones and fish-spines, which has undergone concoction owing to its being enclosed within them.

7

From the marrow we pass on in natural sequence to the brain. For there are many who think that the brain itself consists of marrow, and that it forms the commencement of that substance, because they see that the spinal marrow is continuous with it. In reality the two may be said to be utterly opposite to each other in character. For of all the parts of the body there is none so cold as the brain; whereas the marrow is of a hot nature, as is plainly shown by its fat and unctuous character. Indeed this is the very reason why the brain and spinal marrow are continuous with each other. For, wherever the action of any part is in excess, nature so contrives as to set by it another part with an excess of contrary action, so that the excesses of the two may counterbalance each other. Now that the marrow is hot is clearly shown by many indications. The coldness of the brain is also manifest enough. For in the first place it is cold even to the touch; and, secondly, of all the fluid parts of the body it is the driest and 1321

the one that has the least blood; for in fact it has no blood at all in its proper substance. This brain is not residual matter, nor yet is it one of the parts which are anatomically continuous with each other; but it has a character peculiar to itself, as might indeed be expected. That it has no continuity with the organs of sense is plain from simple inspection, and is still more clearly shown by the fact, that, when it is touched, no sensation is produced; in which respect it resembles the blood of animals and their excrement. The purpose of its presence in animals is no less than the preservation of the whole body. For some writers assert that the soul is fire or some such force. This, however, is but a rough and inaccurate assertion; and it would perhaps be better to say that the soul is incorporate in some substance of a fiery character. The reason for this being so is that of all substances there is none so suitable for ministering to the operations of the soul as that which is possessed of heat. For nutrition and the imparting of motion are offices of the soul, and it is by heat that these are most readily effected. To say then that the soul is fire is much the same thing as to confound the auger or the saw with the carpenter or his craft, simply because the work is wrought by the two in conjunction. So far then this much is plain, that all animals must necessarily have a certain amount of heat. But as all influences require to be counterbalanced, so that they may be reduced to moderation and brought to the mean (for in the mean, and not in either extreme, lies the true and rational position), nature has contrived the brain as a counterpoise to the region of the heart with its contained heat, and has given it to animals to moderate the latter, combining in it the properties of earth and water. For this reason it is, that every sanguineous animal has a brain; whereas no bloodless creature has such an organ, unless indeed it be, as the Poulp, by analogy.

For where there is no blood, there in consequence there is but little heat.

The brain, then, tempers the heat and seething of the heart. In order, however, that it may not itself be absolutely without heat, but may have a moderate amount, branches run from both blood-vessels, that is to say from the great vessel and from what is called the aorta, and end in the membrane which surrounds the brain; while at the same time, in order to prevent any injury from the heat, these encompassing vessels, instead of being few and large, are numerous and small, and their blood scanty and clear, instead of being abundant and thick. We can now understand why defluxions have their origin in the head, and occur whenever the parts about the brain have more than a due proportion of coldness. For when the nutriment steams upwards through the blood-vessels, its refuse portion is chilled by the influence of this region, and forms 1322

defluxions of phlegm and serum. We must suppose, to compare small things with great, that the like happens here as occurs in the production of showers. For when vapour steams up from the earth and is carried by the heat into the upper regions, so soon as it reaches the cold air that is above the earth, it condenses again into water owing to the refrigeration, and falls back to the earth as rain. These, however, are matters which may be suitably considered in the Principles of Diseases, so far as natural philosophy has anything to say to them.

It is the brain again-or, in animals that have no brain, the part analogous to it-which is the cause of sleep. For either by chilling the blood that streams upwards after food, or by some other similar influences, it produces heaviness in the region in which it lies (which is the reason why drowsy persons hang the head), and causes the heat to escape downwards in company with the blood. It is the accumulation of this in excess in the lower region that produces complete sleep, taking away the power of standing upright from those animals to whom that posture is natural, and from the rest the power of holding up the head. These, however, are matters which have been separately considered in the treatises on Sensation and on Sleep.

That the brain is a compound of earth and water is shown by what occurs when it is boiled. For, when so treated, it turns hard and solid, inasmuch as the water is evaporated by the heat, and leaves the earthy part behind. Just the same occurs when pulse and other fruits are boiled. For these also are hardened by the process, because the water which enters into their composition is driven off and leaves the earth, which is their main constituent, behind.

Of all animals, man has the largest brain in proportion to his size; and it is larger in men than in women. This is because the region of the heart and of the lung is hotter and richer in blood in man than in any other animal; and in men than in women. This again explains why man, alone of animals, stands erect. For the heat, overcoming any opposite inclination, makes growth take its own line of direction, which is from the centre of the body upwards. It is then as a counterpoise to his excessive heat that in man’s brain there is this superabundant fluidity and coldness; and it is again owing to this superabundance that the cranial bone, which some call the Bregma, is the last to become solidified; so long does evaporation continue to occur through it under the influence of heat. Man is the only sanguineous animal in which this takes place. Man, again, has more sutures in his skull than any other animal, and the male more than the female. The explanation is again to be found in the greater size of the 1323

brain, which demands free ventilation, proportionate to its bulk. For if the brain be either too fluid or too solid, it will not perform its office, but in the one case will freeze the blood, and in the other will not cool it at all; and thus will cause disease, madness, and death. For the cardiac heat and the centre of life is most delicate in its sympathies, and is immediately sensitive to the slightest change or affection of the blood on the outer surface of the brain.

The fluids which are present in the animal body at the time of birth have now nearly all been considered. Amongst those that appear only at a later period are the residua of the food, which include the deposits of the belly and also those of the bladder. Besides these there is the semen and the milk, one or the other of which makes its appearance in appropriate animals. Of these fluids the excremental residua of the food may be suitably discussed by themselves, when we come to examine and consider the subject of nutrition. Then will be the time to explain in what animals they are found, and what are the reasons for their presence. Similarly all questions concerning the semen and the milk may be dealt with in the treatise on Generation, for the former of these fluids is the very starting-point of the generative process, and the latter has no other ground of existence than generative purposes.

8

We have now to consider the remaining homogeneous parts, and will begin with flesh, and with the substance that, in animals that have no flesh, takes its place. The reason for so beginning is that flesh forms the very basis of animals, and is the essential constituent of their body. Its right to this precedence can also be demonstrated logically. For an animal is by our definition something that has sensibility and chief of all the primary sensibility, which is that of Touch; and it is the flesh, or analogous substance, which is the organ of this sense. And it is the organ, either in the same way as the pupil is the organ of sight, that is it constitutes the primary organ of the sense; or it is the organ and the medium through which the object acts combined, that is it answers to the pupil with the whole transparent medium attached to it. Now in the case of the other senses it was impossible for nature to unite the medium with the sense-organ, nor would such a junction have served any purpose; but in the case of touch she was compelled by necessity to do so. For of all the sense-organs that of touch is the only one that has corporeal substance, or at any rate it is more corporeal than any other, and its medium must be corporeal like itself.

1324

It is obvious also to sense that it is for the sake of the flesh that all the other parts exist. By the other parts I mean the bones, the skin, the sinews, and the blood-vessels, and, again, the hair and the various kinds of nails, and anything else there may be of a like character. Thus the bones are a contrivance to give security to the soft parts, to which purpose they are adapted by their hardness; and in animals that have no bones the same office is fulfilled by some analogous substance, as by fishspine in some fishes, and by cartilage in others.

Now in some animals this supporting substance is situated within the body, while in some of the bloodless species it is placed on the outside.

The latter is the case in all the Crustacea, as the Carcini (Crabs) and the Carabi (Prickly Lobsters); it is the case also in the Testacea, as for instance in the several species known by the general name of oysters. For in all these animals the fleshy substance is within, and the earthy matter, which holds the soft parts together and keeps them from injury, is on the outside. For the shell not only enables the soft parts to hold together, but also, as the animal is bloodless and so has but little natural warmth, surrounds it, as a chaufferette does the embers, and keeps in the smoulder-ing heat. Similar to this seems to be the arrangement in another and distinct tribe of animals, namely the Tortoises, including the Chelone and the several kinds of Emys. But in Insects and in Cephalopods the plan is entirely different, there being moreover a contrast between these two themselves. For in neither of these does there appear to be any bony or earthy part, worthy of notice, distinctly separated from the rest of the body. Thus in the Cephalopods the main bulk of the body consists of a soft flesh-like substance, or rather of a substance which is intermediate to flesh and sinew, so as not to be so readily destructible as actual flesh. I call this substance intermediate to flesh and sinew, because it is soft like the former, while it admits of stretching like the latter. Its cleavage, however, is such that it splits not longitudinally, like sinew, but into circular segments, this being the most advantageous condition, so far as strength is concerned. These animals have also a part inside them corresponding to the spinous bones of fishes. For instance, in the Cuttle-fishes there is what is known as the os sepiae, and in the Calamaries there is the so-called gladius. In the Poulps, on the other hand, there is no such internal part, because the body, or, as it is termed in them, the head, forms but a short sac, whereas it is of considerable length in the other two; and it was this length which led nature to assign to them their hard support, so as to ensure their straightness and inflexibility; just as she has assigned to sanguineous animals their bones or their fish-spines, as the 1325

case may be. To come now to Insects. In these the arrangement is quite different from that of the Cephalopods; quite different also from that which obtains in sanguineous animals, as indeed has been already stated. For in an insect there is no distinction into soft and hard parts, but the whole body is hard, the hardness, however, being of such a character as to be more flesh-like than bone, and more earthy and bone-like than flesh. The purpose of this is to make the body of the insect less liable to get broken into pieces.

9

There is a resemblance between the osseous and the vascular systems; for each has a central part in which it begins, and each forms a continuous whole. For no bone in the body exists as a separate thing in itself, but each is either a portion of what may be considered a continuous whole, or at any rate is linked with the rest by contact and by attachments; so that nature may use adjoining bones either as though they were actually continuous and formed a single bone, or, for purposes of flexure, as though they were two and distinct. And similarly no blood-vessel has in itself a separate individuality; but they all form parts of one whole. For an isolated bone, if such there were, would in the first place be unable to perform the office for the sake of which bones exist; for, were it discontinuous and separated from the rest by a gap, it would be perfectly unable to produce either flexure or extension; nor only so, but it would actually be injurious, acting like a thorn or an arrow lodged in the flesh.

Similarly if a vessel were isolated, and not continuous with the vascular centre, it would be unable to retain the blood within it in a proper state.

For it is the warmth derived from this centre that hinders the blood from coagulating; indeed the blood, when withdrawn from its influence, becomes manifestly putrid. Now the centre or origin of the blood-vessels is the heart, and the centre or origin of the bones, in all animals that have bones, is what is called the chine. With this all the other bones of the body are in continuity; for it is the chine that holds together the whole length of an animal and preserves its straightness. But since it is necessary that the body of an animal shall bend during locomotion, this chine, while it is one in virtue of the continuity of its parts, yet its division into vertebrae is made to consist of many segments. It is from this chine that the bones of the limbs, in such animals as have these parts, proceed, and with it they are continuous, being fastened together by the sinews where the limbs admit of flexure, and having their extremities adapted to each other, either by the one being hollowed and the other rounded, or by 1326

both being hollowed and including between them a hucklebone, as a connecting bolt, so as to allow of flexure and extension. For without some such arrangement these movements would be utterly impossible, or at any rate would be performed with great difficulty. There are some joints, again, in which the lower end of the one bone and the upper end of the other are alike in shape. In these cases the bones are bound together by sinews, and cartilaginous pieces are interposed in the joint, to serve as a kind of padding, and prevent the two extremities from grating against each other.

Round about the bones, and attached to them by thin fibrous bands, grow the fleshy parts, for the sake of which the bones themselves exist.

For just as an artist, when he is moulding an animal out of clay or other soft substance, takes first some solid body as a basis, and round this moulds the clay, so also has nature acted in fashioning the animal body out of flesh. Thus we find all the fleshy parts, with one exception, supported by bones, which serve, when the parts are organs of motion, to facilitate flexure, and, when the parts are motionless, act as a protection.

The ribs, for example, which enclose the chest are intended to ensure the safety of the heart and neighbouring viscera. The exception of which mention was made is the belly. The walls of this are in all animals devoid of bones; in order that there may be no hindrance to the expansion which necessarily occurs in this part after a meal, nor, in females, any interference with the growth of the foetus, which is lodged here.

Now the bones of viviparous animals, of such, that is, as are not merely externally but also internally viviparous, vary but very little from each other in point of strength, which in all of them is considerable. For the Vivipara in their bodily proportions are far above other animals, and many of them occasionally grow to an enormous size, as is the case in Libya and in hot and dry countries generally. But the greater the bulk of an animal, the stronger, the bigger, and the harder, are the supports which it requires; and comparing the big animals with each other, this requirement will be most marked in those that live a life of rapine. Thus it is that the bones of males are harder than those of females; and the bones of flesh-eaters, that get their food by fighting, are harder than those of Herbivora. Of this the Lion is an example; for so hard are its bones, that, when struck, they give off sparks, as though they were stones. It may be mentioned also that the Dolphin, in as much as it is viviparous, is provided with bones and not with fish-spines.

In those sanguineous animals, on the other hand, that are oviparous, the bones present successive slight variations of character. Thus in Birds 1327

there are bones, but these are not so strong as the bones of the Vivipara.

Then come the Oviparous fishes, where there is no bone, but merely fishspine. In the Serpents too the bones have the character of fish-spine, excepting in the very large species, where the solid foundation of the body requires to be stronger, in order that the animal itself may be strong, the same reason prevailing as in the case of the Vivipara. Lastly, in the Selachia, as they are called, the fish-spines are replaced by cartilage. For it is necessary that the movements of these animals shall be of an undulating character; and this again requires the framework that supports the body to be made of a pliable and not of a brittle substance. Moreover, in these Selachia nature has used all the earthy matter on the skin; and she is unable to allot to many different parts one and the same superfluity of material. Even in viviparous animals many of the bones are cartilaginous. This happens in those parts where it is to the advantage of the surrounding flesh that its solid base shall be soft and mucilaginous. Such, for instance, is the case with the ears and nostrils; for in projecting parts, such as these, brittle substances would soon get broken. Cartilage and bone are indeed fundamentally the same thing, the differences between them being merely matters of degree. Thus neither cartilage nor bone, when once cut off, grows again. Now the cartilages of these land animals are without marrow, that is without any distinctly separate marrow. For the marrow, which in bones is distinctly separate, is here mixed up with the whole mass, and gives a soft and mucilaginous consistence to the cartilage. But in the Selachia the chine, though it is cartilaginous, yet contains marrow; for here it stands in the stead of a bone.

Very nearly resembling the bones to the touch are such parts as nails, hoofs, whether solid or cloven, horns, and the beaks of birds, all of which are intended to serve as means of defence. For the organs which are made out of these substances, and which are called by the same names as the substances themselves, the organ hoof, for instance, and the organ horn, are contrivances to ensure the preservation of the animals to which they severally belong. In this class too must be reckoned the teeth, which in some animals have but a single function, namely the mastication of the food, while in others they have an additional office, namely to serve as weapons; as is the case with all animals that have sharp interfitting teeth or that have tusks. All these parts are necessarily of solid and earthy character; for the value of a weapon depends on such properties.

Their earthy character explains how it is that all such parts are more developed in four-footed vivipara than in man. For there is always more earth in the composition of these animals than in that of the human 1328

body. However, not only all these parts but such others as are nearly connected with them, skin for instance, bladder, membrane, hairs, feathers, and their analogues, and any other similar parts that there may be, will be considered farther on with the heterogeneous parts. There we shall inquire into the causes which produce them, and into t