Electric Machines and Drives by Miroslav Chomat - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

index-137_6.png

index-137_7.png

index-137_8.png

index-137_9.png

index-137_10.png

index-137_11.png

index-137_12.png

index-137_13.png

index-137_14.png

index-137_15.png

index-137_16.png

index-137_17.png

index-137_18.png

index-137_19.png

index-137_20.png

index-137_21.png

index-137_22.png

index-137_23.png

index-137_24.png

index-137_25.png

index-137_26.png

index-137_27.png

index-137_28.png

index-137_29.png

From Dynamic Modeling to Experimentation of

Induction Motor Powered by Doubly-Fed Induction Generator by Passivity-Based Control

125

5.3 PBC + PI

The PBC + PI controller is given by the equation below:

BvrG = ˙ λd + RL− 1( θ) λd + B Kp( isG − id ) +

)

sG

Ki

( isG − idsG

(46)

where Kp and Ki are the proportional and integral positive gains. We have:

( isG − id ) = 1( λ

)

sG

(47)

R

sG M − λdsGM

2

=

1

0

I

( λ − λd)

(48)

R

2

0

2

P

˜ λ

Then,

BvrG = ˙ λd + RL− 1( θ) λd + KpBPL− 1( θ) ˜ λ − Ki BP ˜ λ

(49)

R 2

The closed loop error dynamic is:

˙˜ λ = −RL− 1( θλ − KpBPL− 1( θλ + Ki BP˜ λ

(50)

R 2

Consider the desired energy function given by (33), it’s derivative along the trajectories of (50)

is:

˙

V

= ˜ λTR− 1 ˙˜ λ

= ˜ λTL− 1( θλ − K ˜

˜

p λT R− 1 BPL− 1( θ) ˜

λ + Ki λTR− 1 BP ˜ λ

R 2

= ˜ λT L− 1( θ) ˜ λ + ˜ λT −K

˜

p R− 1 BPL− 1( θ) + Ki R− 1 BP λ

R 2

> 0

M

To show that the error dynamic (50) is stable, it’s enough to prove that M is a negative

semi-definite matrix:

Kp

Kp

− Kp

|Δ | LmG LrMeJnGθG

|Δ | LrG LrM + Ki I

R

2

2

|Δ | LrG LmMeJnMθM

M = 1 ⎣

(51)

R

0

0

0

1

0

0

0

M is a negative semi-definite matrix if: XT MX ≤ 0

X ∈ 6 × 1

− Kp

Kp

K

I

p

|Δ | LmG LrMeJnGθG

2 |Δ | LrG LrM + Ki

2 R

2

2

2 |Δ | LrG LmMeJnMθM

XT MX= 1 XT

Kp

I

X

(52)

R

⎣ 2 |Δ | LrGLrM + Ki

2 R

2

0

0

1

2

Kp

2 |Δ | LrG LmMe−JnMθM

0

0

M

To prove that M is a negative semi-definite matrix, it’s enough to prove that M is a negative semi-definite matrix, the calculus of the sub-determinants of this latter show that M is a

negative semi-definite matrix.

Hence the exponential stability of the PBC + PI controller is proven.

index-138_1.png

index-138_2.png

index-138_3.png

index-138_4.png

126

Electric Machines and Drives

6. The construction for BDFTIG

To establish the complete mathematical representation of the dynamic behaviour of the

BDFTIG it is first necessary to clarify the kind of the electromechanical interconnection that

exists between the cascaded machines. One of the simplest ways to connect these two

machines is in the back-to-back method with no phase inversion on the rotor side, as shown

by Figure 6.

Fig. 6. BDFTIG Back-to-Back Connection

By this connection, the rotor currents produced by the two machines join in the subtractive

style, and the rotor voltages have the same signs, i.e. Irp = −Irc and Vrp = Vrc. The chosen connection really affects the distribution of the magnetic fields and flux inside the BDFTIG,

producing the two counter-rotating torques as will be discussed in the following sections.

6.1 Equivalent circuit analysis of the BDFTIG

Figure 7- shows the equivalent circuit of the BDFTIG from which the electrical system

equations can be derived.

Fig. 7. Equivalent Circuit of the BDFTIG

To simplify the controller algorithm, the machine quantities should be expressed in the d-q

frame by employing Park’s and Clark’s transformation. The reason of this transformations is

to remove as many time-varying quantities from the system as possible. By converting the

three-phase machine to its two-phase equivalent and selecting the suitable reference frame,

all the time-varying inductances in both the stator and the rotor are eliminated, allowing for

a simple however complete dynamic model of the electric machine. From these equivalent

circuits the electrical equations of BDFTIG can be determined as shown in the next section.

6.2 Electrical system equations for BDFTIG

Starting with the power machine, the general form of the vector equations of the BDFTIG can

be written as:

q

q

disp

dirp

vqsp

= Rspiqsp + Lsp

+ ω

+ ω

dt

p Lspid

sp + Lmp dt

p Lmpid

r p

q

q

q

q

vsp

= Rspisp + ( Lspisp + Lmpirp) s + ( Lspidsp + Lmpidrp) ωp

index-139_1.png

index-139_2.png

index-139_3.png

index-139_4.png

index-139_5.png

index-139_6.png

index-139_7.png

index-139_8.png

index-139_9.png

index-139_10.png

index-139_11.png

index-139_12.png

index-139_13.png

From Dynamic Modeling to Experimentation of

Induction Motor Powered by Doubly-Fed Induction Generator by Passivity-Based Control

127

Fig. 8. Equivalent Circuits of d-q BDFTIG

The flux linkage current relations are:

Ψ q

q

q

sp

= Lspisp + Lmpirp

Ψ dsp = Lspidsp + Lmpidrp

(53)

q

q

dΨ qsp

vsp

= Rspisp +

+ ω

dt

pΨ dsp

(54)

q

q

q

q

dirp

disp

vrp

= Rrpirp + Lrp

+ ω

+ ω

dt

r Lr pid

r p + Lmp dt

r Lmpid

sp

q

q

q

q

vrp

= Rrpirp + ( Lrpirp + Lmpisp) s + ( Lrpidrp + Lmpidsp) ωr

We have also:

Ψ qrp = Lrpiqrp + Lmpiqsp

Ψ drp = Lrpidrp + Lmpidsp

(55)

q

q

dΨ qrp

vrp

= Rrpisp +

+ ω

dt

pΨ d

r p

(56)

didsp

q

didrp

q

vdsp = Rspidsp + Lsp

− ω

− ω

dt

p Lspisp + Lmp dt

p Lmpir p

q

q

vdsp = Rspidsp + ( Lspidsp + Lmpidrp) s − ( Lspisp + Lmpirp) ωp dΨ dsp

vdsp = Rspidsp +

− ω

dt

pΨ qsp

(57)

didrp

q

didsp

q

vdrp = Rrpidrp + Lrp

+ ω

+ ω

dt

r Lr pir p + Lmp dt

r Lmpisp

vdrp = Rrpidrp + ( Lrpidrp + Lmpidsp) s + ( Lrpiqrp + Lmpiqsp) ωr dΨ drp

vdrp = Rrpidsp +

+ ω

dt

pΨ qrp

(58)

Electrical system equations for control machine:

q

q

di

di

vq

sc

rc

sc

= Rsciqsc + Lsc

+ ω

+ ω

dt

c Lscid

sc + Lmc dt

c Lmcid

rc

q

q

q

q

vsc

= Rscisc + ( Lscisc + Lmcirc) s + ( Lscidsp + Lmcidrc) ωc

index-140_1.png

index-140_2.png

index-140_3.png

index-140_4.png

index-140_5.png

index-140_6.png

index-140_7.png

index-140_8.png

index-140_9.png

index-140_10.png

index-140_11.png

index-140_12.png

index-140_13.png

index-140_14.png

index-140_15.png

index-140_16.png

index-140_17.png

128

Electric Machines and Drives

The flux linkage current relations are:

Ψ qrc = Lsciqsc + Lmciqrc

Ψ dsc = Lscidsp + Lmcidrc

(59)

q

q

vsc

= Rscisc + dΨ qsc + ω

dt

cΨ dsc

(60)

q

q

q

q

di

di

v

rc

sc

rc

= Rrcirc + Lrc

+ ω

+ ω

dt

r Lrcid

rc + Lmc dt

r Lmcid

sc

q

q

q

q

vrc

= Rrcirc + ( Lrcirc + Lmcisc) s + ( Lrpidrp + Lmcidsc) ωr

and:

Ψ q

q

q

rc

= Lrcirc + Lmcisc

Ψ drc = Lrcidrc + Lmcidsc

(61)

q

q

vrc

= Rrcirc + dΨ qrc + ω

dt

r Ψ d

rc

(62)

did

q

did

q

vd

sc

rc

sc

= Rrcidsc + Lsc

− ω

− ω

dt

c Lscisc + Lmc dt

c Lmcirc

q

q

vdsc = Rscidsc + ( Lscidsc + Lmcidrc) s − ( Lscisc + Lmcirc) ωc vdsc = Rscidsc + dΨ dsc − ω

dt

cΨ qsc

(63)

did

q

did

q

vd

rc

sc

rc

= Rrcidrc + Lrc

+ ω

+ ω

dt

c Lrcirc + Lmc dt

r Lmcisc

vdrc = Rrcidrc + ( Lrcidrc + Lmcidsc) s + ( Lrpiqrp + Lmciqsc) ωr vdrc = Rrcidrc + dΨ drc + ω

dt

r Ψ qrc

(64)

As mentioned before, for the BDFTIG with the back-to-back configuration and with no phase

inversion, the rotor currents of the individual machines have the opposite signs, the fluxes

inside the rotor combine to produce the essential ro