Electric Machines and Drives by Miroslav Chomat - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

1000

ω m 500

70

75

80

85

90

95

t(s)

6

(rad)

4

θ M 2

& θ G

83.5

83.55

83.6

83.65

83.7

t(s)

)

0.1

m

0

(N.τ G −0.1

70

75

80

85

90

95

t(s)

)

2

m

0

(N.

τ Md −2

70

75

80

85

90

95

t(s)

Fig. 28. PBC-robustness test-(a) Regulated Motor speed and its reference. (b)Generator

speed. (c) DFIG & IM rotor position. (d) Generator torque (e) Motor desired torque.

10

(A)

5

sGb

0

& i

−5

i sGa −10

83.5

83.55

83.6

83.65

83.7

t(s)

10

(A)

5

d

sGa

0

& i

−5

i sGa

−10

83.5

83.55

83.6

83.65

83.7

t(s)

10

(A)

5

d

sGb

0

& i

−5

i sGb −10

83.5

83.55

83.6

83.65

83.7

t(s)

Fig. 29. PBC -robustness test-(a) isGa, isGb (b) id , i

, i

sGa

sGa (c) id

sGb

sGb.

142

Electric Machines and Drives

20

(A)

10

rGb

0

& i

−10

i rGa

−20

83.5

83.55

83.6

83.65

83.7

83.75

83.8

83.85

83.9

83.95

t(s)

50

(A)

d

rGa

0

& i

i rGa −50

83.5

83.55

83.6

83.65

83.7

83.75

83.8

83.85

83.9

83.95

t(s)

50

(A)

d

rGb

0

& i

i rGb −50

83.5

83.55

83.6

83.65

83.7

83.75

83.8

83.85

83.9

83.95

t(s)

Fig. 30. PBC-robustness test-(a) irGa, irGb (b) id , i

, i

rGa

rGa (c) id

rGb

rGb.

50

(V)

rGb

0

& v

v rGa

−50

83.5

83.55

83.6

83.65

83.7

83.75

83.8

83.85

83.9

83.95

t(s)

)m 1500

(rp

hat

M

1000

ω m

& M

500

ω m

70

75

80

85

90

95

t(s)

eters

1

m

0.5

Switch on Para

0

70

75

80

85

90

95

t(s)

Fig. 31. PBC-robustness test-(a) vrGa, vrGb (b) ωmM, ˆ

ωmM (c) Switch.

DFIG, which at the same time controls the speed of the IM making use of the rotor voltage of

the DFIG as a control variable. A complete stability proof for inner loop control is given. The

proof of the overall scheme including the outer speed loop follows verbatim from (1) and is

omitted here for brevity.

The main advantage of the PBC is that it requires the measurement of only two mechanical

positions for the speed tracking. The PI controller applied to the inner loop provides good

performance but saturation in the transient state can be observed. Robustness tests were

performed to observe the behaviour of the controllers to machine parameter variations. All

the proposed controllers were found to be robust towards variation in machine resistances.

Also, a power flow analysis can be undertaken between the generator, the IM and the grid

index-155_1.png

index-155_2.png

index-155_3.png

index-155_4.png

index-155_5.png

index-155_6.png

index-155_7.png

index-155_8.png

index-155_9.png

index-155_10.png

index-155_11.png

index-155_12.png

index-155_13.png

index-155_14.png

index-155_15.png

index-155_16.png

index-155_17.png

index-155_18.png

index-155_19.png

index-155_20.png

index-155_21.png

index-155_22.png

index-155_23.png

index-155_24.png

index-155_25.png

index-155_26.png

index-155_27.png

index-155_28.png

index-155_29.png

index-155_30.png

index-155_31.png

index-155_32.png

index-155_33.png

index-155_34.png

index-155_35.png

index-155_36.png

index-155_37.png

index-155_38.png

index-155_39.png

index-155_40.png

index-155_41.png

index-155_42.png

index-155_43.png

index-155_44.png

index-155_45.png

index-155_46.png

index-155_47.png

index-155_48.png

index-155_49.png

index-155_50.png

index-155_51.png

index-155_52.png

index-155_53.png

index-155_54.png

index-155_55.png

index-155_56.png

index-155_57.png

index-155_58.png

index-155_59.png

index-155_60.png

index-155_61.png

index-155_62.png

index-155_63.png

index-155_64.png

index-155_65.png

index-155_66.png

index-155_67.png

index-155_68.png

index-155_69.png

index-155_70.png

index-155_71.png

index-155_72.png

index-155_73.png

index-155_74.png

index-155_75.png

index-155_76.png

index-155_77.png

index-155_78.png

index-155_79.png

index-155_80.png

index-155_81.png

index-155_82.png

index-155_83.png

index-155_84.png

index-155_85.png

index-155_86.png

index-155_87.png

index-155_88.png

index-155_89.png

index-155_90.png

index-155_91.png

index-155_92.png

index-155_93.png

index-155_94.png

index-155_95.png

index-155_96.png

index-155_97.png

index-155_98.png

index-155_99.png

index-155_100.png

index-155_101.png

index-155_102.png

index-155_103.png

index-155_104.png

index-155_105.png

index-155_106.png

index-155_107.png

index-155_108.png

index-155_109.png

index-155_110.png

index-155_111.png

index-155_112.png

index-155_113.png

index-155_114.png

index-155_115.png

index-155_116.png

index-155_117.png

index-155_118.png

index-155_119.png

index-155_120.png

index-155_121.png

index-155_122.png

index-155_123.png

index-155_124.png

index-155_125.png

index-155_126.png

index-155_127.png

index-155_128.png

index-155_129.png

index-155_130.png

index-155_131.png

index-155_132.png

index-155_133.png

index-155_134.png

index-155_135.png

index-155_136.png

index-155_137.png

index-155_138.png

index-155_139.png

index-155_140.png

index-155_141.png

index-155_142.png

index-155_143.png

index-155_144.png

index-155_145.png

index-155_146.png

index-155_147.png

index-155_148.png

index-155_149.png

index-155_150.png

index-155_151.png

index-155_152.png

index-155_153.png

index-155_154.png

index-155_155.png

index-155_156.png

index-155_157.png

index-155_158.png

index-155_159.png

index-155_160.png

index-155_161.png

From Dynamic Modeling to Experimentation of

Induction Motor Powered by Doubly-Fed Induction Generator by Passivity-Based Control

143

in order to optimize the efficiency of the overall system. A comparison of the experimental

results of the proposed PBC, PI, PBC+P and PBC+PI algorithm is presented in Table 2. It is

based on the performance obtained practically with the different controllers. In addition to the

comparison criteria of Table 2, it is proposed to check the following to see what their effects

are on the controllers’performance:

2

= 1

ω

indication about the IM speed tracking error. Where

M

nT n

i=1

M( i) − ωRe f M( i)

n is the length of the sampled data and T is the sampling time;

2

ei

= 1

( i) indication about the stator current tracking error in the

sGa

nT n

i=1 isGa( i) − idsGa

phase a;

• Observed magnitude of isGa;

P avg = 1

[ τ

G

n n

i=1

G( i) ωG( i)] indication about the rotor average value of the instantaneous

absorbed power in the DIFG;

P avg = 1

[ τ

M

n n

i=1

M( i) ωM( i)] indication about the rotor average value of the instantaneous

absorbed power in IM;

Rs(Ω) Rr(Ω) Ls( mH) Lr( mH) Lm( mH) J( Nm 2/ rad) DFIG 0.365 0.559

0.938

0.938

12.975 4.358 × 10 3

IM

0.5

0.2

1.2

1.2

9.00

1.1 × 10 3

Table 1. The parameters for DFIG and IM

PBC

PBC+P

PBC+PI

PI

ωRef M

500 1000

500 1000

500 1000

500 1000

[rpm]

1400 800

1400 800

1400 800

1400 800

(1 st order filter) (1 st order filter) (1 st order filter) (1 st order filter) τLM [N.m]

0.5 1.45 0.5 0.5 1.4 0.5 0.5 1 0.5 0.5 1.15 0.5