Millions from Waste by Frederick Arthur Ambrose Talbot - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

 

CHAPTER II
 THE GERMAN CONQUEST OF WASTE

Waste creates wealth. If one desire a convincing illustration of the truth of this latter-day precept one has only to cross the North Sea. It is generally conceded that, at the dawn of the second decade of the twentieth century, the Teutonic Empire had the world at its feet so far as commerce is concerned. There is little reason to doubt but that Germany would have become the super-trading nation of the world within a few more years had not territorial ambition and the lust for military conquest have blinded Reason.

The pre-war wealth of the country, that is as it stood in 1914, is universally acknowledged. But what is not so generally appreciated is the circumstance that, to a very marked degree, this wealth was secured as a result of the scientific utilization of waste. In every ramification of industrial and social activity thrift, system, and organization were conspicuous. Circumstances were primarily responsible for the pursuance of such a policy. Germany is essentially an agricultural country. She was dependent upon outside sources of supply for many of the staple raw materials wherewith to keep her mills and factories going. Consequently she was compelled to rely for her existence upon the margin between buying and selling, and she naturally strove to render this difference as pronounced as possible by turning her purchases to the maximum advantage. Even in the exploitation of her natural resources this tendency was manifest, but little wastage being suffered.

The Germans went farther. From the experience amassed in the development of wealth from waste products they were quite prepared to buy residues from foreign competitors, to ship them to the Homeland, and there to work them up. The country was quite prepared to act as a marine store upon a big scale, because thereby it was able to acquire valuable potential raw materials for infinitesimal expense. The vending countries, as a rule, were quite ready to dispose of their waste at a trifling figure, and often more unfeignedly glad to be rid of what they considered to be a nuisance, comforting themselves with the thought that they had been able to drive good bargains from the sale of what was useless to themselves.

The Teuton buyers were equally satisfied. They generally succeeded in buying useful material at an absurdly low figure. Very often the heaviest item of expense in such transactions was the cost of freighting the waste to Germany, but here they were able to reap distinct advantages from preferential rates. However, such expenditure was speedily recouped because the articles contrived from the erstwhile rubbish commanded a ready sale and at attractive prices. It was by no means uncommon for the Germans to sell the commercial products wrought from the waste back to the very firms whence the last-named had been acquired, and at a considerably enhanced figure.

The strangest feature about these transactions was the keenness with which they were conducted. The countries concerned were far readier to resort to such commercial tactics than to bestir themselves to turn their wastes to similar account, although it must be admitted that the wily Teutons, recognizing the advantage they held, were disposed to invest their processes for translating refuse into commodities with distinct secrecy. They played a gigantic game of bluff and their temerity met with success. If the victims had only reflected they would have realized that such activity was quite possible to themselves; that such enterprise would have provided additional avenues for the employment of their own citizens, and would have contributed materially to their individual commercial wealth.

The Germans ransacked the world for wastes. For instance, who but the Teuton would have gone to stone-fruit packers on the other side of the world and have offered to purchase the stones which the preservers discarded and burned under the factory boilers to assist in raising steam? But the purchasing German firm was astute. The stones were sent home and the packers laughed at the idea of moving such refuse half-way round the world. The buyers suffered the taunts in silence. Upon reaching the German factories the fruit-stones were cracked and the nuts extracted. These were submitted to treatment to yield a wide range of oils, some of which were turned into essences and liqueurs. Then the Germans dispatched much of this reclaimed produce back to the territory where the stones were purchased, where it was bought with avidity, and at inordinately high prices. Little did the packers think that they were buying back their own refuse in another and useful form and were being compelled to pay heavily for the privilege!

The fibrous residue, remaining after the expression of the oil, was turned into cattle-food, much of which also was sold in foreign markets. The nut-shells were turned into carbon or charcoal, which, from its peculiar quality and high grade, was eminently adapted to laboratory and other uses. We were forced to realize that such shells possess distinct virtues, for did we not encourage one and all to save the stones from fruit to furnish the requisite absorbent material with which to equip the gas-masks served to our soldiers to combat the evils of the poison-gas used in the war! In this connection we were completely forestalled by the enemy. Undoubtedly he was encouraged to launch such a devilish weapon from his discovery of a complete antidote to such aggressive measures in the charcoal made from the spurned nut-shells accruing to the fruit-packing country on the other side of the globe.

Sawdust accumulates in Germany as it does in every country where working in wood is practised extensively. But there the waste is not turned into rivers or burned in destructors as in the United States and Canada. Nor is it dumped in unsightly heaps to rot slowly, used to bed-down stock, or distributed over the floors of butchers’ shops and public-houses as in these islands.

A firm conceived the idea of turning this residue to account in the fabrication of a special form of plastic floor-covering. It was mixed with magnesium chloride to form a cement to be applied somewhat after the manner of asphalt, the whole of the area thus being covered and finished off with suitable tools to yield a smooth, level, and attractive finish.

However, it was speedily discovered that this floor-covering suffered from one disability. Magnesium chloride is hygroscopic: it absorbs water, even moisture from the atmosphere, very readily. Consequently it became soft and damp in humid and wet weather. Otherwise it left nothing to be desired, being comfortable to the tread, silent, and warm.

The German is nothing if not thorough. He does not hesitate to harness science to the wheels of industry when the occasion so demands. He realized that to utilize sawdust as a floor-covering it would be necessary to follow strict scientific lines. Accordingly the chemist was called in. He, as a result of prolonged investigations and numerous tests, succeeded in overcoming the outstanding inherent defect of the sawdust paving, and at the same time emphasized that control of the proportions of sawdust and magnesium chloride was essential owing to the first-named varying so widely in its characteristics according to the nature of the wood from which it is derived. Consequently the manufacture of this floor-covering is now supervised by the chemist, and the hygroscopic difficulty has been effectively overcome. The material has achieved a distinct vogue, not only in Germany, but in other countries. It is extremely effective and is relatively inexpensive—the cost averages from 5 to 7 shillings ($1.25 to $1.75) per square yard—bearing in mind its durable and wearing qualities. Incidentally the country has found a highly profitable outlet for its accumulations of sawdust.

The world’s consumption of tin-plate has risen to enormous proportions, the extraordinary expansion of the tinned or canned food industry being responsible for this development. Thousands of tons of steel are absorbed in the manufacture of these containers, as well as hundreds of tons of tin and solder. Upon the removal of the contents the tins are generally thrown away, especially by the prodigal nations. This wastage became so flagrant as to arouse the severe condemnation of economists in every country, but these would-be apostles found it well-nigh hopeless to persuade their compatriots to endeavour to exploit the empty tins. Here and there spasmodic efforts were made upon a limited scale to recover the solder, tin, and steel-plate for further use, but the problem did not prove so easy of solution as it had appeared.

The bulk of the vessel constituted a formidable obstacle, while its susceptibility to the ravages of rust was also discovered to be a distinct drawback. In this country the general practice has beep to crush the tins flat and to feed them into the blast furnaces as scrap, but in this process the tin vanishes up the chimney, while the solder is also lost, though the steel-plate, which forms 99 per cent. of the composition of the vessel, becomes available as raw material. Nevertheless, although the quantity of tin used is trifling, representing only approximately one per cent., the Germans considered it to be quite worthy of recovery, especially when tin commanded from £150 to £200—$750 to $1,000—per ton.

The Teuton attacked the tin-recovery problem more energetically than his colleagues in other countries and apparently achieved success, although the degree of triumph recorded in this connection has always remained a matter for considerable speculation. Be that as it may the German interests concerned were quite prepared to purchase empty British tins and to ship them across the North Sea to be treated in their home plants. From this fact it is only logical to assume that they had found practical ways and means to consummate the desired end, otherwise they would scarcely have gone to the lengths of organizing a complete collecting system in these islands, and of incurring the freightage charges, although the waste was carried at a low figure. With the outbreak of war, and the rise in the price of tin to approximately £300 ($1,500) a ton, we were forced to inquire into the possibilities of recovering the tin and solder from this refuse, and by energetic action were able to equal, if not to surpass, German effort, so that to-day de-tinning may be said to represent an established British industry.

The fact that Germany was compelled to depend extensively upon outside sources for supplies of raw materials prompted the theory in many quarters that, once the British blockade was firmly established, surrender must follow quickly from economic pressure. But the enemy displayed his ability to hold out for a far longer period than we had anticipated. Why? Simply because the moment he saw himself isolated from his outside sources of supply he inaugurated a more rigid system for the compulsory collection, segregation and utilization of his domestic waste. We know to-day how sternly these orders were enforced, and how completely the country was covered by official organizations established to this end.

To ensure that nothing of industrial value should be lost a collecting centre was established in every village and hamlet, the local chief magistrate being vested with wide powers for the conduct of the work placed in his charge. It was his duty to see that everything and anything capable of further exploitation was retrieved. The inhabitants were notified by public placard that they must bring and surrender their accumulations of refuse to the collecting centre at specific intervals, according to the available machinery and the population of the village. The head of every family or household was held personally responsible for the preservation of anything capable of further use and residue incurred within his home. Any dereliction in this respect, or infraction of the official commands, was subject to punishment according to the nature of the offence.

The materials which were in greatest demand were duly set forth. They included such junk as old metal of every description, from useless cooking utensils to fragments of wire, worn-out tools, abandoned implements and nails recovered from packing cases: textile odds and ends no matter how old and threadbare from the heterogeneous contents of the rag-bag to discarded suits, dresses, hosiery, frills, ribbon, and hats: and kitchen waste in infinite variety. The metal was turned over to the munition plants, the textile waste to the woollen, paper, and other mills, while the organic waste was distributed throughout the countryside for feeding stock after the fats and greases had been extracted.

In the towns and cities similar organizations were created, only in these instances the regulations were somewhat more stringent. All and every kind of kitchen waste had to be surrendered daily. In the leading cities it was incumbent upon every householder to have his accumulation of refuse from the previous day ready for the arrival of the official collecting cart. As this passed through the street in which he resided he had to carry and discharge his consignment of refuse into the vehicle. In some instances, as in Berlin, this task involved early rising because the collecting duty had to be completed before 7 a.m.

In the towns and cities the waste was most rigorously controlled. It was criminal for the housewife or maid to permit the grease clinging to the plates and dishes from the table to escape down the sink. This fat had to be emptied into a special pail, and with the minimum of water. Terse instructions as to how this could be done to the satisfaction of the authorities were issued. It would seem as if the salvage of grease were carried to an absurdly fine degree, but in view of the prevailing circumstances the authorities were justified in compelling the recovery of such an apparently insignificant trifle as a dab or two of grease upon a dinner-plate, since it was found that the daily yield of fat from the average town was about 8,000 pounds. Truly the enemy may be said to have fully realized the truth that “many a mickle makes a muckle.”

But the inhabitants, though forced to gather all their fat with such scrupulous care and to surrender it to the authorities, were enabled to receive a certain proportion back again—by paying for it—in the form of soap. The fat was secured in order to extract its glycerine content for the production of explosives, a certain quantity being set on one side to be turned into a lubricating grease to keep the oil-starved mammoth machine plants of the country going. The residue remaining after the extraction of the glycerine was turned into soap.

Skins, rags, bones, feathers, hair, rubber-scrap and other articles too numerous to specify were collected by this machinery. All waste arising in the slaughter of animals for food was carefully gathered. Special factories were reserved for treating the carcases of animals which had succumbed from old age, accident, disease and other causes. A farmer was not even permitted to bury the corpse of a dog. The authorities alone were vested with the power to handle deceased animals. These were thrown into suitably designed vessels, sufficiently large in some instances to receive a horse intact, which were then hermetically sealed to prevent the escape of noisome gases. Cooking was pursued to secure the fats and other products arising from the destructive distillation of the dead animal. The gases which were thrown off during the process were carefully collected, condensed to shed any foreign particles which happened to be in suspension, and then fed to the furnaces to assist in raising the heat required for cooking. By the time the distillation process had been completed only a minute quantity of fibrous residue remained together with the solid particles of bones. This mass was ground up and converted into chemical manure.

The shortage of oil was most keenly felt because this affected every range of the industrial and domestic life. Perhaps we do not generally realize the fact that all machinery would be condemned to immobility were lubricating oil supplies to be cut off. But it was not only imperative to keep the war material factories, trains, trams, motor vehicles, electric generating stations and a host of other plants in operation. Fats were in demand for a more vital issue—the table. To meet the shortage of butter, vegetable or nut-oil and animal margarine, fats and greases were in urgent request.

To mitigate the deficiency in this direction as far as possible a further rigorous enactment was put into force. It was rendered a penal offence to throw away the kernels of plums, peaches, apricots, prunes, cherries and other stone fruits or even the pips of apples and pears. One and all had to be carefully husbanded and surrendered to the authorities at special collecting stations, which, for the most part, were established in schools and municipal buildings. Juvenile effort and enthusiasm were fired. The school children were urged to maintain an alert eye for such raw material and were also encouraged to gather acorns, horse-chestnuts, and beech-nuts. The yield of such residues must have been enormous in the aggregate. One city alone reported the production of over 300,000 pounds of oil during a single year from the various nuts collected within its jurisdiction.

In the exploitation of gaseous products the Germans have undoubtedly displayed remarkable initiative. They certainly pioneered the use of the gases arising from the manufacture of pig-iron. It was the practice to allow the gases from the blast-furnaces to escape into the atmosphere. Seeing that approximately 150,000 cubic feet of gas arise from the production of a ton of pig-iron, and bearing in mind the output of the ironworks, it will be seen that the wastage in this direction must have represented a formidable item during the twenty-four hours.

These waste gases were chemically investigated, and it was discovered that approximately one-fifth of the total volume thrown off consisted of carbon monoxide gas which has a very high heating value. Thereupon the Germans set to work to recover this gas, to clean it and to convert it into a fuel for driving suitably designed gas engines. Years of labour and study were devoted to the problem, which was discovered to be exceedingly abstruse. But the obstacles were overcome and the blast-furnace gas engine made its appearance. The perfection of this means of utilizing a waste product has revolutionized a certain phase of industry throughout the world. One of the first firms to adopt the new idea was the Krupp establishment, where the gas collected from eight blast-furnaces which hitherto had been allowed to escape into and mingle with the atmosphere was harnessed to drive fifteen big engines. The perfection of this achievement in waste utilization speedily became reflected throughout the country and was subsequently introduced into this country where vast strides in connection with its use have been made.

Much has been related concerning the development of the airship in Germany, but this has been due in no small measure to the fact that it afforded a profitable outlet for the utilization of a waste product—one absolutely vital to the airship. I refer to hydrogen. This gas is produced in enormous quantities at many German works, and, for a considerable period, had to be ignored because no industrial use for it was apparent. A certain quantity was absorbed in the synthetic production of precious stones—topaz, rubies, and sapphires—but this consumption was trifling. Its fellow, oxygen, remained a drug on the market for many years until the coming of the oxy-acetylene and oxy-hydrogen method of welding and cutting metals came into popular favour. Then the demand for oxygen expanded so rapidly as to compel the laying down of plants for the production of oxygen from water by electrolysis. But the increased output of oxygen released still larger quantities of hydrogen for which practically no market obtained.

Consequently the endeavours of Zeppelin and his contemporaries received every encouragement. With the conquest of the air by the dirigible all anxiety concerning the profitable use of hydrogen disappeared. At one large factory, producing this gas in huge volumes, a special plant capable of filling the largest Zeppelin craft was laid down. The low figure at which hydrogen was obtainable was responsible in no small measure for the popularity of ballooning in Germany in days previous to the coming of the airship. The use of coal-gas for this purpose was discouraged: it was far more valuable for fuel applications, whereas the hydrogen was not only a superior lifting agent but deserved employment because it offered a remunerative outlet for a waste, and would assist in the expansion of other industries depending upon supplies of cheap oxygen.

To encourage the aeronautical use of hydrogen the firm in question embarked upon another branch of trading. It assumed the manufacture of cylinders or steel bottles for the storage of the gas under pressure—up to 200 atmospheres. Batteries of these bottles were maintained in a charged condition ready for instant dispatch to any part of the country in reply to a telegraphic or telephonic order. The airship pioneers in Germany were never in a quandary concerning the acquisition of the indispensable gas, nor were they faced with the obligation to lay down their own plants for its supply to meet their individual needs. Hydrogen was obtainable in any desired quantity at the end of a wire, and could be purchased as readily as a truck-load of coal from a colliery, while it was also available at an attractive price.

To deal fully with the German conquest of waste would prove wearisome. Enterprise and initiative are apparent in every direction from the use of recovered solder for the production of toy soldiers to the wholesale stripping of motor-cars and cheap clocks for their integral parts. Little wonder therefore that the Germans built up a wealthy national fabric. But probably the most striking evidence of the truth of the assertion that waste creates wealth is extended by the coal dye-stuffs industry. Sixty years ago the tar arising from the distillation of coal was as anathema to the engineers concerned, as I have previously related. Its disposal offered a pretty problem. It was difficult to burn, could not be turned into streams or the drains, and could not be allowed to dissipate itself into the ground. Any one who was prepared to fetch it could take it away with the engineer’s most profound blessings. It was waste in its most compelling form.

Then came Perkin with his discovery of mauve from the much-maligned tar. Immediately the former anathema of the gas-works became invested with a new and indefinable significance. But so far as Britain was concerned little progress was to be recorded. Perkin struggled valiantly to establish a new industry in this country, only to suffer discouragement and ham-stringing obstruction for his ingenuity and enterprise. The Germans appropriated the discovery and prosecuted researches and experiments so vigorously and whole-heartedly as to build up one of the biggest monopolies known to industrial effort.

It was not until the declaration of war that the world recognized the extent of the tribute it had been prepared to pay annually to the Teuton in this one field of trading. The sudden interruption of supplies of colouring agents derived from coal-tar, and made in the huge factories fringing the Rhine, Main and Spree, threatened a whole host of trades from China to Peru. The competitive nations were forced to turn their attention to the mastery of an industry which hitherto they had virtually neglected in order to keep their industries alive, only to discover that they had much to learn. In the United States thousands suffered want and distress from unemployment just because the stocks of dyes had run out and their domestic dye-manufacturing plants were unable to rise to the occasion with sufficient promptitude. Antiseptics were difficult to procure, especially those which had achieved such a wide measure of popular favour during recent years, because they were of German origin and were no longer forthcoming. Amateur photographers were compelled to pack away their cameras and to forgo the pursuance of their hobby until such time as the essential chemicals once more became procurable and cheaper, while doctors were forced to polish up long-forgotten or rusty knowledge concerning the herbaceous drugs which had been displaced by those derived from coal-tar.

A few figures will serve to drive home the stranglehold which the Germans had secured upon the trade of the world from the scientific exploitation of a waste product. For 5,000 years India supplied the world with indigo which was of vegetable origin. Apparently it held an unassailable commercial position and was held in particularly high esteem by Japan and China. Bauer, the German chemist, resolved to solve the indigo riddle and at once set out to make it from coal-tar. It proved a difficult quest occupying many years and involving thousands of experiments. But perseverance brought its due reward although success was not recorded until a round £1,000,000 had been spent. Then, before it had become established upon the market, it suffered eclipse by an improved process which had also been perfected by a German.

Within five years of its appearance upon the market synthetic indigo had driven its natural rival from India virtually into oblivion. The coal-tar competitor even established a firm foothold in the land where the vegetable article had held sway for so many thousand years. Throughout China and Japan a similar story was related. Indian indigo was no longer required. It was beaten hopelessly in price, the factor which counts in commercial circles, by the synthetic German article. Of the artificial colouring materials imported by China German indigo claimed two-thirds. A seventh of the artificial dyes imported by Japan was German indigo, while one-tenth of the dye-stuffs imported from Germany into the United States was artificial indigo.

As a result of less than fifty years’ ceaseless endeavour Germany built up an industry specializing in the manufacture of tinctorial matters derived from coal-tar, capitalized at £50,000,000—$250,000,000—and had a list of 2,000 different colours of a synthetic character which she could supply, one thousand of which were in steady daily demand. We talk about the restoration of the British coal-tar dye-stuffs industry. The Americans voice a similar story. It is glib. How far have we got? As a result of five years’ hard work in Britain we are in the position to market about 300 of the 2,000 dye-stuffs which Germany has in her trade catalogue, while America can point to a list of about 200. True, these represent many of the colours which are in heaviest request, but it will be seen that we have a very long way to go yet before we can claim to have wrested the industry from Germany, while in comparison with the £50,000,000—$250,000,000—of capital invested in the Teuton industry, the £5,000,000—$25,000,000—sunk in the British enterprise appears paltry.

To indicate how industriously and comprehensively the German houses have probed this particular waste utilization problem it may be mentioned that one of the leading houses in the industry has taken out approximately 6,500 patents to protect its activities, while it turns out a round 2,000 different products all made from coal-tar. The manufacture of the synthetic drugs—aspirin, veronal, sulphonal, phenacetin—and a host of others runs into stupendous figures. That concerning antiseptic preparations as well as the production of chemicals incidental to photography and the leather trades is equally imposing. It is estimated that the total capital sunk in German enterprises identified with the exploitation of coal-tar ranges between £140,000,000 and £160,000,000—$700,000,000 to $800,000,000. The return is exceedingly attractive, exceeding £80,000,000—$400,000,000—per annum in value.

To the British nation the magnitude and prosperity of this huge traffic in coal-tar derivatives with its enormous wealth is particularly galling. Had we displayed a more sympathetic attitude towards the discovery of Perkin and his endeavours, and had we displayed similar initiative, energy and enterprise the monopoly which became Germany’s might have been ours. But we disdained to exploit a waste. We left it to a persevering rival, and became content to pay him tribute for the utilization of a fundamental British discovery and incidentally to charge his coffers with the sinews of war. Had we kept the potential treasure-house of coal-tar to ourselves the history of the world might have been written very differently. It was the wealth accruing from the coal-tar dye-stuffs industry which enabled Germany to play a far bigger part than may be generally conceived in the development of her other industries, especially that pertaining to the chemical trade, the dye-works constituting the nursery where Germany raised her battalions of chemists.

It must not be inferred from what I have narrated that the German has a peculiar prerogative in the mastery of waste products: far from it. In certain ranges of industry we have eclipsed the Teuton and have paddled our own canoe so far as blazing the trail of industrial economy is concerned. Nor is the Teuton temperamentally better adapted to the scientific exploitation of refuse. For the most part he has been compelled to investigate these divers potential raw materials to maintain his industrial existence. Moreover, as may be readily conceived from what I have related, the issue has been forced upon him by repressive official machinery and legislative measures. Discipline in this as in many other fields has fulfilled its purpose. Certainly it has reduced every German scrap-heap and dump into a Tom Tiddler’s ground and the application of its contents into a semi-automatic operation, or at least into part of the intricate routine of industry. It is to be hoped that we have not allowed the lesson thus taught to be lost. By now we should have learned, and digested thoroughly, the truth of the precept that waste creates wealth—and commercial power.