College Physics (2012) by Manjula Sharma, Paul Peter Urone, et al - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

index-1_1.jpg

College Physics

OpenStax College

Rice University

6100 Main Street MS-380

Houston, Texas 77005

To learn more about OpenStax College, visit http://openstaxcollege.org.

Individual print copies and bulk orders can be purchased through our website.

© 2013 Rice University. Textbook content produced by OpenStax College is licensed under a Creative Commons Attribution 3.0

Unported License. Under this license, any user of this textbook or the textbook contents herein must provide proper attribution as

follows:

If you redistribute this textbook in a digital format (including but not limited to EPUB, PDF, and HTML), then you must retain on

every page the following attribution:

“Download for free at http://cnx.org/content/col11406/latest/.”

If you redistribute this textbook in a print format, then you must include on every physical page the following attribution:

“Download for free at http://cnx.org/content/col11406/latest/.”

If you redistribute part of this textbook, then you must retain in every digital format page view (including but not limited to

EPUB, PDF, and HTML) and on every physical printed page the fol owing attribution:

“Download for free at http://cnx.org/content/col11406/latest/.”

If you use this textbook as a bibliographic reference, then you should cite it as fol ows: OpenStax College, Col ege Physics.

OpenStax College. 21 June 2012. <http://cnx.org/content/col11406/latest/> .

For questions regarding this licensing, please contact partners@openstaxcollege.org.

Trademarks

The OpenStax College name, OpenStax College logo, OpenStax College book covers, Connexions name, and Connexions logo are

registered trademarks of Rice University. Al rights reserved. Any of the trademarks, service marks, collective marks, design rights, or

similar rights that are mentioned, used, or cited in OpenStax College, Connexions, or Connexions’ sites are the property of their

respective owners.

ISBN-10

1938168003

ISBN-13

978-1-938168-00-0

Revision

CP-1-000-DW

index-3_1.jpg

index-3_2.jpg

index-3_3.jpg

index-3_4.jpg

index-3_5.jpg

OpenStax College

OpenStax College is a non-profit organization committed to improving student access to quality learning materials. Our free textbooks

are developed and peer-reviewed by educators to ensure they are readable, accurate, and meet the scope and sequence requirements

of modern col ege courses. Through our partnerships with companies and foundations committed to reducing costs for students,

OpenStax College is working to improve access to higher education for al .

Connexions

The technology platform supporting OpenStax College is Connexions (http://cnx.org), one of the world’s first and largest open-

education projects. Connexions provides students with free online and low-cost print editions of the OpenStax College library and

provides instructors with tools to customize the content so that they can have the perfect book for their course.

Rice University

OpenStax College and Connexions are initiatives of Rice University. As a leading research

university with a distinctive commitment to undergraduate education, Rice University aspires

to path-breaking research, unsurpassed teaching, and contributions to the betterment of our

world. It seeks to fulfil this mission by cultivating a diverse community of learning and

discovery that produces leaders across the spectrum of human endeavor.

Foundation Support

OpenStax College is grateful for the tremendous support of our sponsors. Without their strong engagement, the goal of free access to

high-quality textbooks would remain just a dream.

The Wil iam and Flora Hewlett Foundation has been making grants since 1967 to help

solve social and environmental problems at home and around the world. The

Foundation concentrates its resources on activities in education, the environment, global

development and population, performing arts, and philanthropy, and makes grants to

support disadvantaged communities in the San Francisco Bay Area.

Guided by the belief that every life has equal value, the Bil & Melinda Gates Foundation

works to help all people lead healthy, productive lives. In developing countries, it

focuses on improving people’s health with vaccines and other life-saving tools and

giving them the chance to lift themselves out of hunger and extreme poverty. In the

United States, it seeks to significantly improve education so that all young people have

the opportunity to reach their full potential. Based in Seattle, Washington, the foundation

is led by CEO Jeff Raikes and Co-chair William H. Gates Sr., under the direction of Bil

and Melinda Gates and Warren Buffett.

Our mission at the Twenty Mil ion Minds Foundation is to grow access and success by

eliminating unnecessary hurdles to affordability. We support the creation, sharing, and

proliferation of more effective, more affordable educational content by leveraging

disruptive technologies, open educational resources, and new models for collaboration

between for-profit, nonprofit, and public entities.

The Maxfield Foundation supports projects with potential for high impact in science,

education, sustainability, and other areas of social importance.

2

3

Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Introduction: The Nature of Science and Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Physics: An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Physical Quantities and Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Accuracy, Precision, and Significant Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Vectors, Scalars, and Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Time, Velocity, and Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Motion Equations for Constant Acceleration in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Problem-Solving Basics for One-Dimensional Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Falling Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Graphical Analysis of One-Dimensional Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Two-Dimensional Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Kinematics in Two Dimensions: An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Vector Addition and Subtraction: Graphical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Vector Addition and Subtraction: Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Projectile Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Addition of Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4 Dynamics: Force and Newton's Laws of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Development of Force Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Newton’s First Law of Motion: Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Newton’s Second Law of Motion: Concept of a System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Newton’s Third Law of Motion: Symmetry in Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Normal, Tension, and Other Examples of Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Problem-Solving Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Further Applications of Newton’s Laws of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Extended Topic: The Four Basic Forces—An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Drag Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Elasticity: Stress and Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6 Uniform Circular Motion and Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Rotation Angle and Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Centripetal Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Centripetal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Fictitious Forces and Non-inertial Frames: The Coriolis Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Newton’s Universal Law of Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Satellites and Kepler’s Laws: An Argument for Simplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7 Work, Energy, and Energy Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Work: The Scientific Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Kinetic Energy and the Work-Energy Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Gravitational Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Conservative Forces and Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Nonconservative Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Work, Energy, and Power in Humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

World Energy Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

8 Linear Momentum and Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Linear Momentum and Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Elastic Collisions in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Inelastic Collisions in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Collisions of Point Masses in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Introduction to Rocket Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

9 Statics and Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

The First Condition for Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

The Second Condition for Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Applications of Statics, Including Problem-Solving Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Simple Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Forces and Torques in Muscles and Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

10 Rotational Motion and Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Angular Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Kinematics of Rotational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Dynamics of Rotational Motion: Rotational Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Rotational Kinetic Energy: Work and Energy Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

4

Angular Momentum and Its Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Collisions of Extended Bodies in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Gyroscopic Effects: Vector Aspects of Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

11 Fluid Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

What Is a Fluid? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Variation of Pressure with Depth in a Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Pascal’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Gauge Pressure, Absolute Pressure, and Pressure Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Archimedes’ Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Pressures in the Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

12 Fluid Dynamics and Its Biological and Medical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Flow Rate and Its Relation to Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Bernoulli’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

The Most General Applications of Bernoulli’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Viscosity and Laminar Flow; Poiseuille’s Law . . . . . . . . .