College Physics
OpenStax College
Rice University
6100 Main Street MS-380
Houston, Texas 77005
To learn more about OpenStax College, visit http://openstaxcollege.org.
Individual print copies and bulk orders can be purchased through our website.
© 2013 Rice University. Textbook content produced by OpenStax College is licensed under a Creative Commons Attribution 3.0
Unported License. Under this license, any user of this textbook or the textbook contents herein must provide proper attribution as
follows:
•
If you redistribute this textbook in a digital format (including but not limited to EPUB, PDF, and HTML), then you must retain on
every page the following attribution:
“Download for free at http://cnx.org/content/col11406/latest/.”
•
If you redistribute this textbook in a print format, then you must include on every physical page the following attribution:
“Download for free at http://cnx.org/content/col11406/latest/.”
•
If you redistribute part of this textbook, then you must retain in every digital format page view (including but not limited to
EPUB, PDF, and HTML) and on every physical printed page the fol owing attribution:
“Download for free at http://cnx.org/content/col11406/latest/.”
•
If you use this textbook as a bibliographic reference, then you should cite it as fol ows: OpenStax College, Col ege Physics.
OpenStax College. 21 June 2012. <http://cnx.org/content/col11406/latest/> .
For questions regarding this licensing, please contact partners@openstaxcollege.org.
Trademarks
The OpenStax College name, OpenStax College logo, OpenStax College book covers, Connexions name, and Connexions logo are
registered trademarks of Rice University. Al rights reserved. Any of the trademarks, service marks, collective marks, design rights, or
similar rights that are mentioned, used, or cited in OpenStax College, Connexions, or Connexions’ sites are the property of their
respective owners.
ISBN-10
1938168003
ISBN-13
978-1-938168-00-0
Revision
CP-1-000-DW
OpenStax College
OpenStax College is a non-profit organization committed to improving student access to quality learning materials. Our free textbooks
are developed and peer-reviewed by educators to ensure they are readable, accurate, and meet the scope and sequence requirements
of modern col ege courses. Through our partnerships with companies and foundations committed to reducing costs for students,
OpenStax College is working to improve access to higher education for al .
Connexions
The technology platform supporting OpenStax College is Connexions (http://cnx.org), one of the world’s first and largest open-
education projects. Connexions provides students with free online and low-cost print editions of the OpenStax College library and
provides instructors with tools to customize the content so that they can have the perfect book for their course.
Rice University
OpenStax College and Connexions are initiatives of Rice University. As a leading research
university with a distinctive commitment to undergraduate education, Rice University aspires
to path-breaking research, unsurpassed teaching, and contributions to the betterment of our
world. It seeks to fulfil this mission by cultivating a diverse community of learning and
discovery that produces leaders across the spectrum of human endeavor.
Foundation Support
OpenStax College is grateful for the tremendous support of our sponsors. Without their strong engagement, the goal of free access to
high-quality textbooks would remain just a dream.
The Wil iam and Flora Hewlett Foundation has been making grants since 1967 to help
solve social and environmental problems at home and around the world. The
Foundation concentrates its resources on activities in education, the environment, global
development and population, performing arts, and philanthropy, and makes grants to
support disadvantaged communities in the San Francisco Bay Area.
Guided by the belief that every life has equal value, the Bil & Melinda Gates Foundation
works to help all people lead healthy, productive lives. In developing countries, it
focuses on improving people’s health with vaccines and other life-saving tools and
giving them the chance to lift themselves out of hunger and extreme poverty. In the
United States, it seeks to significantly improve education so that all young people have
the opportunity to reach their full potential. Based in Seattle, Washington, the foundation
is led by CEO Jeff Raikes and Co-chair William H. Gates Sr., under the direction of Bil
and Melinda Gates and Warren Buffett.
Our mission at the Twenty Mil ion Minds Foundation is to grow access and success by
eliminating unnecessary hurdles to affordability. We support the creation, sharing, and
proliferation of more effective, more affordable educational content by leveraging
disruptive technologies, open educational resources, and new models for collaboration
between for-profit, nonprofit, and public entities.
The Maxfield Foundation supports projects with potential for high impact in science,
education, sustainability, and other areas of social importance.
2
3
Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1 Introduction: The Nature of Science and Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Physics: An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Physical Quantities and Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Accuracy, Precision, and Significant Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Vectors, Scalars, and Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Time, Velocity, and Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Motion Equations for Constant Acceleration in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Problem-Solving Basics for One-Dimensional Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Falling Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Graphical Analysis of One-Dimensional Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3 Two-Dimensional Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Kinematics in Two Dimensions: An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Vector Addition and Subtraction: Graphical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Vector Addition and Subtraction: Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Projectile Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Addition of Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4 Dynamics: Force and Newton's Laws of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Development of Force Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Newton’s First Law of Motion: Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Newton’s Second Law of Motion: Concept of a System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Newton’s Third Law of Motion: Symmetry in Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Normal, Tension, and Other Examples of Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Problem-Solving Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Further Applications of Newton’s Laws of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Extended Topic: The Four Basic Forces—An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Drag Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Elasticity: Stress and Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6 Uniform Circular Motion and Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Rotation Angle and Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Centripetal Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Centripetal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Fictitious Forces and Non-inertial Frames: The Coriolis Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Newton’s Universal Law of Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Satellites and Kepler’s Laws: An Argument for Simplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7 Work, Energy, and Energy Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Work: The Scientific Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Kinetic Energy and the Work-Energy Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Gravitational Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Conservative Forces and Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Nonconservative Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Work, Energy, and Power in Humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
World Energy Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
8 Linear Momentum and Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Linear Momentum and Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Elastic Collisions in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Inelastic Collisions in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Collisions of Point Masses in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Introduction to Rocket Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
9 Statics and Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
The First Condition for Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
The Second Condition for Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Applications of Statics, Including Problem-Solving Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Simple Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Forces and Torques in Muscles and Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
10 Rotational Motion and Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Angular Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Kinematics of Rotational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Dynamics of Rotational Motion: Rotational Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Rotational Kinetic Energy: Work and Energy Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
4
Angular Momentum and Its Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Collisions of Extended Bodies in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Gyroscopic Effects: Vector Aspects of Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
11 Fluid Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
What Is a Fluid? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Variation of Pressure with Depth in a Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Pascal’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Gauge Pressure, Absolute Pressure, and Pressure Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Archimedes’ Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Pressures in the Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
12 Fluid Dynamics and Its Biological and Medical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Flow Rate and Its Relation to Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Bernoulli’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
The Most General Applications of Bernoulli’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Viscosity and Laminar Flow; Poiseuille’s Law . . . . . . . . .