Handbook of Formulae and Constant by Afirk - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

Table of Contents

TOPIC PAGE

 

Basic Units (distance, area, volume, mass, density) ............................2

 

Mathematical Formulae .......................................................................5

 

Applied Mechanics .............................................................................10

 

Thermodynamics.................................................................................21

 

Fluid Mechanics..................................................................................28

 

Electricity............................................................................................30

 

Periodic Table .....................................................................................34

 

Names in the Metric System

 

VALUE EXPONENT SYMBOL PREFIX
1 000 000 000 000 1012 T tera 1 000 000 000 109 G giga 1 000 000 106 M mega 1 000 103 k kilo

100 102 h hecto 10 101 da deca 0.1 10-1 d deci 0.01 10-2 c centi 0.001 10-3 m milli 0.000 001 10-6 µ micro

0.000 000 001 10-9 n nano 0.000 000 000 001 10-12 p pico

 

Conversion Chart for Metric Units

To
To To To Metre, To To To Milli- Centi- Deci- Gram, Deca- HectoKilo- Litre

Kilo- x 106 x 105 x 104 x 103 x 102 x 101
Hectox 105 x 104 x 103 x 102 x 101 x 10-1
Deca- x 104 x 103 x 102 x 101 x 10-1 x 10-2
Metre, 3
x 102 x 101 x 10-1 x 10-2 x 10-3Gram, x 10
Litre
Deci- x 102 x 101 x 10-1 x 10-2 x 10-3 x 10-4 Centi- x 101 x 10-1 x 10-2 x 10-3 x 10-4 x 10-5Milli- x 10-1 x 10-2 x 10-3 x 10-4 x 10-5 x 10-6

BASIC UNITS
SI IMPERIAL
DISTANCE

1 metre (1 m) = 10 decimetres (10 dm) 12 in. = 1 ft
= 100 centimetres (100 cm) 3 ft = 1 yd
= 1000 millimetres (1000 mm) 5280 ft = 1 mile

1760 yd = 1 mile 1 decametre (1 dam) = 10 m
1 hectometre (1 hm) = 100 m

1 kilometre (1 km) = 1000 m

 

Conversions:

 

1 in. = 25.4 mm 1 ft = 30.48 cm

 

1 mile = 1.61 km 1 yd = 0.914 m 1 m = 3.28 ft

 

Area

 

1 sq metre (1 m2) = 10 000 cm2 1 ft2 = 144 in.2 = 1 000 000 mm2 1 yd2 = 9 ft2 1 sq mile = 640 acre = 1 section 1 sq hectometre (1 hm2) = 10 000 m2

 

= 1 hectare (1 ha)

 

1 sq km (1 km2) = 1 000 000 m2

 

Conversions:

 

2 = 6.45 cm2 = 645 mm2 2 = 10.8 ft21 m 1 acre = 0.405 ha

 

1 sq mile = 2.59 km2

SI IMPERIAL

Volume

 

1 m3 = 1 000 000 cm3 1 ft3 = 1728 in.3 = 1 x 109 mm3 1 yd3 = 27 ft3

 

1 dm3 = 1 litre 1(liquid) U.S. gallon = 231 in.3

 

1 litre = 1000 cm

 

3 = 4 (liquid) quarts

 

1 mL = 1 cm3 1 U.S. barrel (bbl) = 42 U.S. gal.

 

1 m3 = 1000 litres 1 imperial gallon = 1.2 U.S. gal.

 

Conversions:

 

3 31 in. 3 31 m 1 litre = 61 in.3

 

1 U.S.gal = 3.78 litres

 

1 U.S. bbl = 159 litres

 

1 litre/s = 15.9 U.S. gal/min

 

Mass and Weight

 

1 kilogram (1 kg) = 1000 grams 1000 kg = 1 tonne 2000 lb = 1 ton (short) 1 long ton = 2240 lb

 

Conversions:

 

1 kg (on Earth) results in a weight of 2.2 lb

 

Density

 

mass

 

density

 

=

 

mass weight density =weight volume volume

 

ρ

=
m › kg žρ = w › lb ž V œm3Ÿ  V œft3 Ÿ 

Conversions:

 

(on Earth) a mass density of 1 kg3 results in a weight density of 0.0623 lb3m ftSI Imperial

RELATIVE DENSITY

In SI R.D. is a comparison of mass density to a standard. For solids and liquids the standard is fresh water.
water.
In Imperial the corresponding quantity is specific gravity; for solids and liquids a comparison of weight density to that of

Conversions:

In both systems the same numbers hold for R.D. as for S.G. since these are equivalent ratios.

RELATIVE DENSITY (SPECIFIC GRAVITY) OF VARIOUS SUBSTANCES

Water (fresh)...............1.00 Mica............................2.9
Water (sea average) ....1.03 Nickel .........................8.6
Aluminum...................2.56 Oil (linseed) ................0.94 Antimony....................6.70 Oil (olive) ...................0.92 Bismuth.......................9.80 Oil (petroleum) ...........0.76-0.86 Brass ...........................8.40 Oil (turpentine) ...........0.87 Brick ...........................2.1 Paraffin .......................0.86 Calcium.......................1.58 Platinum....................21.5 Carbon (diamond).......3.4 Carbon (graphite)........2.3 Carbon (charcoal) .......1.8 Sand (dry) ...................1.42 Silicon.........................2.6 Silver.........................10.57

Chromium...................6.5 Slate ............................2.1-2.8 Clay.............................1.9 Sodium........................0.97 Coal.............................1.36-1.4 Steel (mild) .................7.87 Cobalt .........................8.6 Sulphur .......................2.07 Copper ........................8.77 Tin...............................7.3 Cork ............................0.24 Tungsten ...................19.1 Glass (crown)..............2.5 Wood (ash) .................0.75
Glass (flint).................3.5 Wood (beech) .............0.7-0.8 Gold ..........................19.3 Wood (ebony).............1.1-1.2 Iron (cast)....................7.21 Wood (elm).................0.66
Iron (wrought) ............7.78 Wood (lignum-vitae) ..1.3
Lead ..........................11.4 Wood (oak).................0.7-1.0 Magnesium .................1.74 Wood (pine)................0.56 Manganese..................8.0 Wood (teak) ................0.8 Mercury ....................13.6 Zinc.............................7.0

Greek Alphabet

Alpha α Beta β Gamma γ Delta Epsilon ε Zeta ζ Eta η Theta θ Pi Omega &, ω Iota ι Rho ρ Kappa κ Sigma Σ, σ Lambda λ Tau τ Mu µ Upsilon υ Nu ν Phi Φ, φ Xi ξ Kai χ Omicron Ο Psi ψ

MATHEMATICAL FORMULAE
Algebra
1. Expansion Formulae

 

(x + y)2 = x2 + 2xy + y2

 

(x - y)2 = x2 - 2xy + y2

 

x2 - y2 = (x - y) (x + y)

 

(x + y)3 = x3 + 3x2y + 3xy2 + y3

 

x3 + y3 = (x + y) (x2 - xy + y2)

 

(x - y)3 = x3 - 3x2y + 3xy2 - y3

 

x3 - y3 = (x - y) (x2 + xy + y2)

 

2. Quadratic Equation

 

If ax + bx + c = 0,

 

-b± b2−4acThen x = 2a

 

Trigonometry
1. Basic Ratios

 

Sin

 

=

 

y , cos =x , tan =y h h x

 

2. Pythagoras' Law

 

x2 + y2 = h2

 

3. Trigonometric Function Values

 

Sin is positive from 0° to 90° and positive from 90° to 180°

 

Cos is positive from 0° to 90° and negative from 90° to 180°

 

Tan is positive from 0° to 90° and negative from 90° to 180°

 

4. Solution of Triangles
a. Sine Law

 

a= b= c Sin A Sin B Sin C

 

b. Cosine Law

 

c2 = a2 + b2 - 2 ab Cos C

 

a2 = b2 + c2 - 2 bc Cos A

 

b2 = a2 + c2 - 2 ac Cos B

 

Geometry
1. Areas of Triangles
a. All Triangles

 

Area

=
base x perpendicular height 2

Area

=
bcSin A= ab Sin C= acSin B 2 2 2

and,

 

Area= s(s-a)(s-b) (s-c)

where, s is half the sum of the sides, or s = a + b c 2

b. Equilateral Triangles

 

Area = 0.433 x side2

 

2. Circumference of a Circle

 

C = πd

 

3. Area of a Circle

 

A =

 

π

 

r

 

2 = circumference x r= πd2 = 0.7854d2 2 4

 

4. Area of a Sector of a Circle

A =
arcx r 2

A =θ° x πr2 (θ = angle in degrees) 360

 

A =

 

θ

 

°

 

r2

 

(θ = angle in radians)

 

2

 

5. Area of a Segment of a Circle

 

A = area of sector – area of triangle

 

Also approximate area =4 h2 d -0.6083 h

 

6. Ellipse

 

A = π Dd4

 

Approx. circumference =

()

π2

 

7. Area of Trapezoid

 

A = › +bžhœ Ÿ 

 

8. Area of Hexagon

 

A = 2.6s2 where s is the length of one side

 

9. Area of Octagon

 

A = 4.83s2 where s is the length of one side

 

10. Sphere

 

Total surface area A =4πr2

 

Surface area of segment As = πdh

 

Volume V =

 

4 πr3 3

 

Volume of segment

 

V

 

s

 

=

 

π

 

h2

 

3 (3r – h)

 

Vs =π h 2+3a2) where a = radius of segment base6 (h

 

11. Volume of a Cylinder

 

V = πd2L where L is cylinder length 4

 

12. Pyramid

 

Volume

 

V = 1 base area x perpendicular height

 

3

 

Volume of frustum

 

VF = h (A +a + Aa) where h is the perpendicular height, A and a are areas as shown 3

 

13. Cone

 

Area of curved surface of cone:

A =
πDL 2

Area of curved surface of frustum

 

A

 

F

=
π +d)L 2

Volume of cone:

 

V= base area

 

× perpendicular height 3

 

Volume of frustum:

 

= perpendicular height×π (R2 + r2+Rr)VF 3

 

APPLIED MECHANICS
Scalar
- a property described by a magnitude only

 

Vector - a property described by a magnitude and a direction

 

Velocity - vector property equal to displacement

 

time

 

The magnitude of velocity may be referred to as speed

 

In SI the basic unit is ms , in Imperial ft Other common units are kmh , mi

 

m ftConversions: 1 =3.28

 

s s

 

km mi1 =0.621

 

h h

 

Speed of sound in dry air is 331 ms at 0°C and increases by about 0.61 ms for each °C rise

 

Speed of light in vacuum equals 3 x 10 8 m

 

s

 

Acceleration - vector property equal to change in velocity

 

time

 

In SI the basic unit is

 

s

 

2

 

m , in Imperial

 

ft s2

 

Conversion

 

: 1

 

s

 

2

 

m = 3.28

 

ft s2

 

Acceleration due to gravity, symbol "g", is 9.81 m or 32.2 ft s2 s2

LINEAR VELOCITY AND ACCELERATION

u initial velocity v final velocity t elapsed time s displacement a acceleration
v=u+at

s= v+ut

 

2

 

s = ut + 12 at2

 

v2=u2+2as

 

Angular Velocity and Acceleration

θ angular displacement (radians)
ω angular velocity (radians/s); ω1 = initial, ω2 = final α angular acceleration (radians/s2)

ω2 = ω1 + α t

 

θ = ω1 + ω2 x t 2

 

θ = ω1 t + ½ α t2

 

ω22 = ω12 + 2 α θ

linear displacement, s = r θ linear velocity, v = r ω linear, or tangential acceleration, aT = r

Tangential, Centripetal and Total Acceleration

 

Tangential acceleration aT is due to angular acceleration α

 

aT = rα

 

Centripetal (Centrifugal) acceleration ac is due to change in direction only

 

ac = v2/r = r ω2

 

Total acceleration, a, of a rotating point experiencing angular acceleration is the vector sum of aT and ac

 

a = aT + ac

FORCE

Vector quantity, a push or pull which changes the shape and/or motion of an object

 

In SI the unit of force is the newton, N, defined as a kg m2s

 

In Imperial the unit of force is the pound lb

 

Conversion: 9.81 N = 2.2 lb

 

Weight

 

The gravitational force of attraction between a mass, m, and the mass of the Earth

 

In SI weight can be calculated from

 

Weight = F = mg , where g = 9.81 m/s2

 

In Imperial, the mass of an object (rarely used), in slugs, can be calculated from the known weight in pounds

 

m= Weightg g=32.2ft2s

 

Newton's Second Law of Motion

 

An unbalanced force F will cause an object of mass m to accelerate a, according to:

 

F = ma (Imperial F = wg a, where w is weight)

 

Torque Equation

 

T = I α where T is the acceleration torque in Nm, I is the moment of inertia in kg m2 and α is the angular acceleration in radians/s2

 

Momentum

 

Vector quantity, symbol p,

 

p = mv (Imperial p = wg v, where w is weight)

 

in SI unit is kg ms

 

Work

 

Scalar quantity, equal to the (vector) product of a force and the displacement of an object. In simple systems, where W is work, F force and s distance

 

W = F s

 

In SI the unit of work is the joule, J, or kilojoule, kJ