Optoelectronic Devices and Properties by Oleg Sergiyenko - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

of 0.16 eV has been observed in the PL spectrum, showing good size uniformity of

nanocrystals. The band gap has also been verified in the analysis of I-V characteristics of an

ITO/ZnO/SiO2/Al structure, high bias, holes or electrons may tunnel through the ZnO

nanodot layer and contribute an appreciable current that follows the Fowler-Nordheim (FN)

tunneling equation, from which the band alignment of the ZnO nanodots on ITO has been

determined. This work demonstrates an efficient synthesis of nanodots and an easy

approach to studying physical properties of nanocrystals that will help the material

optimization in device application. This chapter also outlines the application of ZnO QDs

optoelectronic property, such as EL and NST device. The results described in this chapter

are important for the future development of ZnO technology and optoelectronic

applications.

9. Acknowledgments

The authors gratefully acknowledge the financial support the Singapore National Research

Foundation under CRP Award No. NRF-G-CRP 2007-01, T. Mei acknowledges support from

Department of Education of Guangdong Province, China (Grant No. C10131). Y. Hu

acknowledges support from the Educational Commission of Zhejiang Province of China

(Grant No. Z200909406) and Zhejiang Qianjiang Talent Project (2010R10025).

10. References

[1] M. Haase, H. Weller, A. Henglein. J. Phys. Chem. 1998, 92, 482

[2] E. M. Wong, P. C. Searson. Appl. Phys. Lett. 1999, 74, 2939

[3] J. M. Klostranec, W. C. W. Chan. Adv. Mater. 2006, 18, 1953

[4] S. A. Mcdonald, G. Konstantatos, S. G. Zhang, et al. Nature Materials. 2005, 4, 138

[5] A. J. Nozik. Physica E. 2002, 14, 115

[6] E. T. Kim, A. Madhukar, Z. M. Ye, et al. Appl. Phys. Lett. 2004, 84, 3277

[7] S. Fafard, K. Hinzer, S. Raymond, et al. Science. 1996, 274, 1350

[8] C. A. Leatherdale, W. K. Woo, F. V. Mikulec, et al. J. Phys. Chem. B. 2002, 106, 7619

[9] S. F. Wuister, I. Swart, F. V. Driel, et al. Nano Lett. 2003, 3, 503

Synthesis, Self-assembly and Optoelectronic Properties

of Monodisperse ZnO Quantum Dots

237

[10] S. I. Erlingsson, Y. V. Nazarov, V. I. Fal’ko. Phys. Rev. B. 2001, 64, 195306

[11] O. B. Shchekin, D. G. Deppe . Appl. Phys. Lett. 2002, 80, 3277

[12] O. I. Micic, S. P. Ahrenkiel, A. J. Nozik. Appl. Phys. Lett. 2001, 78, 4022

[13] M. A. Malik, P. O’Brien, N. Revaprasadu. J. Mater. Chem. 2001, 11, 2382

[14] Y. L. Wu, C. S. Lim, S. Fu, et al. Nanotechnology. 2007, 18, 215604

[15] B. Capoen, A. Martucci, S. Turrell, et al . J. Molecular Structure. 2003, 651, 467

[16] W. Y. Mao, J. Guo, W. L. Yang, et al. Nanotechnology. 2007, 18, 485611

[17] D. S. Wang, T. Xie, Q. Peng, et al. Chem. Eur. J. 2008, 14, 2507

[18] A. Iwabuchi, C. K. Choo, K. Tanaka . J. Phys. Chem. B. 2004, 108, 10863

[19] R. M. Laine, J. C. Marchal, H. P. Sun, et al. Nature Materials. 2006, 5, 710

[20] B. Ludolph, M. A. Malik, P. O’Brien, et al. Chem. Commun. 1998, 1849

[20] O. I. Micic, S. P. Ahrenkiel, D. Bertram, et al. Appl. Phys. Lett. 1999, 75, 478

[21] J. G. Cederberg, F. H. Kaatz, R. M. Biefeld . J. Crystal Growth. 2004, 261, 197

[22] D. M. Bagnall, Y. F. Chen, Z. Zhu, et al. Appl. Phys. Lett. 1997, 70, 2230

[23] D. C. Look. Materials Science and Engineeriing B. 2001, 80, 383

[24] S. Krishnanoorthy, T. Bei, E. Zoumakis, et al. Biosens. Bioelectron. 2006, 22, 707

[25] L. P. Bauermann, J. Bill, F. Aldinger . J. Phys. Chem. B. 2006, 110, 5182

[26] L. Spanhel, M. A. Anderson . J. Am. Chem. Soc. 1991, 113, 2826

[27] M. S. Tokumoto, S. H. Pulcinelli, C. V. Santilli, et al . J. Phys. Chem. B 2003, 107, 568

[28] H. K. Yadav, K. Sreenivas, V. Gupta, et al . J. Mater. Res. 2007, 22, 2404

[29] E. A. Meulenkamp . J. Phys. Chem. B 1998, 102, 7764

[30] D. W. Bahnemann, C. Kormann, M.R. Hoffmann. J. Phys. Chem. 1987, 91, 3789

[31] N. S. Pesika, Z. Hu, K. J. Stebe, et al. J. Phys. Chem. B 2002, 106, 6985

[32] E.M. Wong, J.E. Bonevich, P.C. Searson . J. Phys. Chem. B 1998, 102, 7770

[33] L. Guo, S. Yang, C. Yang, et al. Appl. Phys. Lett. 2000, 76, 2901

[34] Z. Hu, G. Oskam, P. C. Searson . J. Colloid Interface Sci. 2003, 263, 454

[35] S. H. Li, M. S. Toprak, Y. S. Jo, et al. Adv. Mater. 2007, 19, 4347

[36] K. F. Lin, H. M. Cheng, H. C. Hsu, et al. Appl. Phys. Lett. 2006, 88, 263117

[37] K. F. Lin, H. M. Cheng, H. C. Hsu, et al. Chemical Physics Letters. 2005, 409, 208

[38] M. Vafaee, M. S. Ghamsari. Mater.Lett. 2007, 61, 3265

[39] R. Viswanatha, P. K. Santra, C. Dasgupta, et al . Phys. Rev. Lett. 2007, 98, 255501

[40] Z. Hu, D. J. E. Ramirez, B. E. H. Cervera, et al. J. Phys. Chem. B 2005, 109, 11209

[41] Y. Hu, Z. M. Jiang, C. D. Xu, et al. J. Phys. Chem. C 2007, 111, 9757

[42] Y. Hu, T. Mei, J. Guo, et al. Inorg. Chem. 2007, 46, 11031

[43] K. Sue, K. Kimura, K. Arai. Mater. Lett. 2004, 58, 3229

[44] P. M.Aneesh, K. A. Vanaja, M. K.Jayaraj. Proc. SPIE. 2007, 6639, 66390J

[45] T. Andelman, Y. Y. Gong, M. Polking, et al. J. Phys. Chem. B. 2005, 109, 14314

[46] I. D. Kosobudsky, N. M. Ushakov, G. Y. Yurkov, et al . Inorg. Mater. 2005, 41, 1172

[47] P. D. Cozzoli, M. L. Curri, A. Agostiano, et al. J. Phys. Chem. B. 2003, 107, 4756

[48] L. L. Yang, J. H. Yang, X. Y. Liu, et al. J . Alloys Compd. 2008, Article in press

[49] Y. C. Zhang, X. Wu, X. Y. Hu, et al . J. Crystal Growth. 2005, 280, 250

[50] L. M. Shen, L. C. Guo, N. Z. Bao, et al. Chem. Lett. 2003, 32, 826

[51] S. Mahamuni, K. Borgohain, B. S. Bendre, et al. J. Appl. Phys. 1999, 85, 2861

[52] B. S. Bendre, S. Mahamuni. J. Mater. Res. 2004, 19, 737

[53] M. Rajalakshmi, A. K. Arora. J. Appl. Phys. 2000, 87, 2445

[54] S. D. Kshirsagar, V. V. Nikesh, S. Mahamuni. Appl. Phys. Lett. 2006, 89, 053120

238

Optoelectronic Devices and Properties

[55] R. S. Ajimsha, G. Anoop, A. Aravind, et al. Electrochemical. Soild-State Lett. 2008, 11, K14

[56] A. Said, L. Sajti, S. Giorgio, et al. J. Phys :Conference Series. 2007, 59, 259

[57] H. Usui, Y. Shimizu, T. Sasaki, et al. J. Phys. Chem. B. 2005, 109, 120

[58] S. Barik, A. K. Srivastava, P. Misra, et al. Solid State Commun. 2003, 127, 463

[59] L. Chen, Z. Q. Chen, X. Z. Shang, et al. Solid State Commun. 2006, 137, 561

[60] S. T. Tan, X. W. Sun, X. H. Zhang, et al. J. Crystal. Growth. 2006, 290, 518

[61] L. M. Yang, Z. Z. Ye, Y. J. Zeng, et al . Solid State Commun. 2006, 138, 577

[62] S. W. Kim, M. Ueda, M. Funato, et al. J. Appl. Phys. 2005, 97, 104316

[63] S. W. Kim, S. Fujita, S. Fujita, et al. Appl. Phys. Lett. 2002, 81, 5036

[64] Y. Y. Peng, T. E. Hsieh, C. H. Hsu. Appl. Phys. Lett. 2006, 89, 211909

[65] Y. Y. Peng, T. E. Hsieh, C. H. Hsu . J. Mater. Res. 2008, 23, 1155

[66] J. C. Ma, Y. C. Liu, C. S. Xu, et al . J. Appl. Phys. 2005, 97, 103509

[67] T. Tani, L. Madler, S. E. Pratsinis. J. Nanoparticle. Res. 2002, 4, 337

[68] L. Madler, W. J. Stark, S. E. Pratsinis. J. Appl. Phys. 2002, 92, 6537

[69] C. Liewhiran, S. Phanichphant. Sensors. 2007, 7, 185

[70] C. Liewhiran, A. Camenzind, A. Teleki, et al. IEEE Trans. Nanotechnol.2007, Jan, 672

[71] J. G. Lu, Z. Z. Ye, Y. Z. Zhang, et al. Appl. Phys. Lett. 2006, 89, 023122

[72] J. G. Lu, Z. Z. Ye, Y. Z. Zhang, et al. Appl. Phys. Lett. 2006, 88, 063110

[73] Y. S. Chang, Y. H. Chang, I. G. Chen, et al. J. Crystal Growth. 2002, 243, 319

[74] T. A. Kuriakose, S. N. Kalkura, M. Palanichamy, et al . J. Crystal Growth. 2004, 263, 517

[75] G. M. Wu, J. Wang, J. Shen, et al. Materials Research Bulletin. 2001, 36, 2127

[76] X. Wang, Y. D. Li. J. Am. Chem. Soc. 2002, 124, 2880

[77] M. Mo, J. H. Zeng, X. M. Liu, et al. Adv. Mater. 2002, 14, 1658

[78] E. Hosono, S. Fujihara, K. Kakiuchi, et al . J. Am. Chem. Soc. 2004,126,7790

[79] J. M. Wang, L. Gao. Solid State Commun. 2004, 132, 269

[80] B. Liu, H. C. Zeng. J. Am. Chem. Soc. 2003, 125, 4430

[81] Y. Sun, D. J. Riley, M. N. R. Ashfold. J. Phys. Chem. B. 2006, 110, 15186

[82] J. B. Liang, J. W. Liu, Q. Xie, et al . J. Phys. Chem. B. 2005, 109, 9463

[83] J. C. Ge, B. Tang, L. H. Zhou, et al. Nanotechnology. 2006, 17, 1316

[84] M. Stefanescu, O. Stefanescu, M.Stoia, et al. J. Therm. Anal. Cal. 2007, 88, 27

[85] X. L. Li, X. X. Zhang, Z. R. Li, et al. Solid State Commun. 2006, 137, 581

[86] J. R. A. Sietsma, J. D. Meeldijk, J. P. D. Breejen, et al. Angew. Chem. Int. Ed. 2007, 46, 4547

[87] S. Maensiri, P. Laokul, V. Promarak. J. Crystal Growth. 2006, 289, 102

[88] H. Zhou, H. Alves, D. M. Hofmann, et al. Appl. Phys. Lett. 2002, 80, 210

[89] H. Zhou, H. Alves, D. M. Hofmann, et al. Phys. Stat. Sol. 2002, 229, 825

[90] J. P. Sylvestre, S. Poulin, A. V. Kabashin, et al. J. Phys. Chem. B. 2004, 108, 16864

[91] P. S. Liu, W. P. Cai, H. B. Zeng. J. Phys. Chem. C. 2008, 112, 3261

[92] K. V. Anikin, N.N. Melnik, A. V. Simakin, et al. Chem. Phys. Lett. 2002, 366, 357

[93] J. L. Zhao, X. M. Li, J. M. Bian, et al. J. Crystal Growth. 2005, 276, 507

[94] D. H. A. Blank, H. Hilgenkamp, A. Brinkman, et al. Appl. Phys. Lett. 2001, 79, 394

[95] A. V. Simakin, V. V. Voronov, N. A. Kirichenko, et al. Appl. Phys. A. 2004, 79, 1127

[96] G. A. Shafeev, E. Freksz, F. B. Verduraz. Appl. Phys. A. 2004, 78, 307

[97] J. Zhang, C. Q. Lan. Materials Letters. 2008, 62, 1521

[98] C. H. Liang, Y. Shimizu, T. Sasaki, et al. J. Mater. Res. 2004, 19, 1551

[99] J. K. Muth, R. M. Kolbas, A. K. Sharma, et al. J. Appl. Phys. 1999, 85, 7884

[100] K. Y. Yun, M. Noda, M. Okuyama. Appl. Phys. Lett. 2003, 83, 3981

Synthesis, Self-assembly and Optoelectronic Properties

of Monodisperse ZnO Quantum Dots

239

[101] J. D. Ye, S. L. Gu, S. M. Zhu, et al. J. Crystal Growth. 2002, 243, 151

[102] P. A. Williams, J. L. Roberts, C. Jones, et al. Chem. Vap. Deposistion. 2002, 8, 163

[103] F. Hamelmann, G. Haindl, J. Schmalhorst, et al. Thin Solid Films. 2000, 358, 90

[104] M. C. Jeong, B. Y. Oh, W. Lee, et al. J. Crystal Growth. 2004, 268, 149

[105] S.K.Lee, H. J. Choi, P. Pauzauskie, et al. Phys. Stat. Sol. 2004, 241, 2775

[106] T. Minemoto, T. Negami, S. Nishiwaki, et al. Thin Solid Films. 2000, 372, 173

[107] S. H. Jeong, B. S. Kim, B. T. Lee. Appl. Phys. Lett. 2003, 82, 2625

[108] K. Zhang, F.R. Zhu, C. H. A. Huan, et al. Thin Solid Films. 2000, 376, 255

[109] K. W. Kim, N. Koguchi, Y. W. Ok, et al. Appl. Phys. Lett. 2004, 84, 3810

[110] A. Teleki, S. E. Pratsinis, K. Kalyanasundaram, et al . Sens. Actuators B. 2006, 119, 683

[111] R. Mueller, R. Jossen, H. K. Kammler, et al. AICHE J. 2004, 50, 3085

[112] A. Killian, T. F. Morse. Aerosol Sci. Technol. 2001, 34, 227

[113] R. Mueller, L. Madler, S. E. Pratsinis. Chemical Engineering Science. 2003, 58, 1969

[114] T. Sahm, L. Madler, A. Gurlo, et al . Sens. Actuators B. 2004, 98, 148

[115] R. Jissen, S. E. Pratsinis, W. J. Stark, et al. J. Am. Ceram. Soc. 2005, 88, 1388

[116] L. Madler, W.J. Stark, S. E. Pratsinis. J. Mater. Res. 2002, 17, 1356

[117] T. Tani, K. Takatori, S. E. Pratsinis. J. Am. Ceram. Soc. 2004, 87, 365

[118] S. Kim, J. J. Gislason, R. W. Morton, et al. Chem. Mater. 2004, 16, 2336

[119] H. Schulz, W. J. Stark, M. Maciejewski, et al . J. Mater. Chem. 2003, 13, 2979

[120] J. Zhang, F. H. Jiang, L. D. Zhang . J. Phys. Chem. B. 2004, 108, 7002

[121] J. Y. Lee, D. S. Kim, J. Park. Chem. Mater. 2007, 19, 4663

[122] C.X. Xu, X. W. Sun, Z. L. Dong, et al. J. Crystal Growth. 2004, 270, 498

[123] T. Gao, T. H. Wang. J. Crystal Growth. 2006, 290, 660

[124] D. W. Zeng, B. L. Zhu, C.S. Xie, et al. Materials Science and Engineering A. 2004, 366, 332

[125] M. H. Huang, Y. Y. Wu, H. Feick, et al. Adv. Mater. 2001, 13, 113

[126] X. H. Zhang, S. J. Chua, A. M. Yong. et al. Appl. Phys. Lett. 2007, 90, 013107

[127] C. Li, G. J. Fang, J. Li, et al. J. Phys. Chem. C. 2008, 112, 990

[128] H. J. Fan, B. Fuhrmann, R. Scholz. Nanotechnology. 2006, 17, S231

[129] S. J. Pearton, D. P. Norton, K. Ip, Y.W. Heo, T. Steiner, Superlattices Microstruct. 2003,

34, 3

[130] M. L. Kahn, M. Monge, E. Snoeck, A. Maisonnat, B. Chaudret, Small 2005, 1, 221–224.

[131] C. Pages, Y. Coppel, M. L. Kahn, A. Maisonnat, B. Chaudret, Chemphyschem 2009. 10.

2234.

[132] K. Soulantica, A. Maisonnat, M.-C. Fromen, M.-J. Casanove, B. Chaudret, Angew.

Chem. Int. Ed. 2003, 42, 1945.

[133] F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, P. Fejes, Science 2004, 303, 821.

[134] L. Chen, J. Xu, J. D. Holmes, M. A. Morris, J. Phys. Chem. C 2010, 114, 2003.

[135] Wang, L. J., Giles, N. C. J. Appl. Phys. 2003, 94, 973.

[136] Lin, K. F.; Cheng, H. M.; Hsu, H. C.; Lin, L. J.; Hsieh, W. F. Chem. Phys. Lett. 2005, 409,

208.

[137] Zeghbroeck, B. V. Principles of Semiconductor Devices, 2004.

[138] Chanana, R. K.; Donald, K. M.; Ventra, M. D.; Pantelides, S. T.; Feldman, L. C.; Chung,

G. Y.; Tin, C. C.; Williams, J. R.; Weller, R. A. Appl. Phys. Lett. 2000, 77, 2560.

[139] Sze, S. M. Physics of Semiconductor Devices, 1981.

[140] Fan, Z.; Lu, J. G. J. Nanosci. Nanotechnol. 2005, 5, 1561.

[141] C. Y. Lee, Y. Y. Hui, W. F. Su. C. F. Lin, Appl. Phys. Lett. 2008, 92, 261107.

240

Optoelectronic Devices and Properties

[142] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G.

Requicha , Nature Mater. 2003, 2, 229._.

[143]W. Nomura, M. Ohtsu, and T. Yatsui, Appl. Phys. Lett. 2005, 86, 181108.

[144] T. Yatsui, Y. Ryu, T. Morishima, W. Nomura, T. Kawazoe, T. Yonezawa, M. Washizu,

H. Fujita, M. Ohtsu1, Appl. Phys. Lett. 2010, 96, 133106.

[145] H. Oana, M. Ueda, and M. Washizu, Biochem. Biophys. Res. Commun. 1999, 265, 140.

[146] T. Yatsui, H. Jeong, and M. Ohtsu, Appl. Phys. B: Lasers Opt. 2008, 93, 199.

[147]M. Tammer, L. Horsburgh, A. P. Monkman, W. Brown, H. Burrows, Adv. Funct. Mater.

2002, 12, 447.

[148] M. Campoy-Quiles, Y. Ishii, H. Sakai, H. Murata, Appl. Phys. Lett. 2008, 92, 213305.

[149] B. Gil, A. V. Kavokin, Appl. Phys. Lett. 2002, 81, 748.

12

In-Situ Analysis of Optoelectronic Properties of

Semiconductor Nanostructures and Defects in

Transmission Electron Microscopes

Yutaka Ohno1, Ichiro Yonenega1 and Seiji Takeda2

1Institute for Materials Research, Tohoku University

2Osaka University

Japan

1. Introduction

A wide variety of optoelectronic devices such as photovoltaic (including solar cells and

photo detectors), photoemitting (including lasers) and photocatalytic devices have been

developed for more than five decades. The physical nature of such devices, especially

operated with visible and near-infrared light, is electronic transitions between pairs of

energy levels, typically in semiconductors. In addition to the conduction band and the

valence band, defect levels, i.e., localized energy levels associated with nanostructures and

lattice defects, are responsible for the electronic transitions. Various kinds of nanostructures

can be fabricated, spontaneously or artificially, inside and onto semiconductors. Also, lattice

defects, such as point defects (including vacancies, interstitials, dopant and impurity atoms)

and extended defects (including grain boundaries, stacking faults, dislocations, and point

defect clusters), can be introduced, inevitably or accidentally, during crystal growth and

device fabrication processes. Therefore, in order to fabricate optoelectronic devices with

advanced and ultimate functions, the structural properties of semiconductor nanostructures

and defects, as well as their optoelectronic properties such as the possible presence of defect

levels, should be understood with a high spatial resolution simultaneously with a high

spectral resolution.

Optical measurements such as luminescence and photoabsorption spectroscopy are

powerful techniques to determine defect levels. Since the spectral resolution is higher than

the order of 10−3 eV, this techniques are useful to study the energy levels in the low energy

range between the band edges of semiconductors (of the order of 100 eV at most), which

dominate the optoelectronic properties of the device products made of the materials.

Therefore, when the measurements are performed in a transmission electron microscope

(TEM), such as near-field optical measurements in a TEM (Ohno, 2010a), we can examine

the optoelectronic properties simultaneously with the structural properties in small regions

observed in-situ with the TEM.

With an extremely high spectral resolution in comparison with the other spectroscopic

techniques in TEM, such as energy dispersive x-ray spectroscopy (e.g., Terauchi et al, 2010)

and electron energy-loss spectroscopy (e.g., Kikkawa et al, 2007) with a resolution less than

about 10-1 eV, the optical measurements in TEM enable us to assess in detail defect levels in

242

Optoelectronic Devices and Properties

small regions. It is interesting to note that we can examine in-situ the optoelectronic and

structural properties of nanostructures and defects inside a material, which properties are

affected by the surrounding material and are not determined in-situ by the optical

measurements in scanning probe microscopes, such as scanning near-field optical

microscopy. As the continuing miniaturization and integration of optoelectronic devices, the

optical measurements in TEM have been established as an indispensable micro-

characterization technique. In this chapter, principles of the optical measurements in TEM,

i.e., cathodoluminescence (CL) spectroscopy and transmission electron microscopy under

light illumination are briefly summarized, and the resent analysis of some semiconductors

for optoelectronic devices are reviewed.

2. Principles of the optical measurements in TEM

2.1 CL spectroscopy in TEM

CL is a phenomenon of light emission induced by electron irradiation. CL light is emitted

from a region in which electrons are irradiated, and the optical parameters, such as the

photon energy, intensity and polarization, vary depending on the electronic structure in the

region. Therefore, CL spectroscopy performed in a TEM enables us to examine the electronic

structure simultaneously with the atomic structure in small regions observed in-situ with

the TEM, where electrons are irradiated. For example, the structural and compositional

variation, as well as the defect concentration and distribution, can be determined. Also, the

electronic properties such as defect levels and their carrier capture cross sections, which are

associated with the carrier lifetime and diffusion length, can be analyzed. In this subsection,

the principles underlying the generation and interpretation of CL signals are summarized.

The detailed descriptions of the principles including the pioneer work in 1978 (Petroff et al,

1978) are provided in a review (Yacobi and Holt, 1990).

2.1.1 Spatial resolution of CL measurements

Electrons irradiated into a material can undergo elastic and inelastic scattering. The

irradiated material is excited via inelastic electron scattering, and this excitation results in

the formation of x-rays, Auger electrons, secondary electrons, electron-hole pairs, and so

forth. CL lights are emitted via the recombination of electron-hole pairs. The spatial

resolution of CL measurements is, therefore, determined by the distribution of electron-hole

pairs.

When electrons are irradiated into a material, each electron changes its direction via an

elastic scattering, and it reduces its kinetic energy via an inelastic scattering. As a result of

the scattering processes, the original trajectories of the electrons are randomized. For a thin

solid material through which most incident electrons can transmit, used as a specimen in a

TEM, the shape of the electron penetration range (a so called generation volume) is conical

and the radius of a generation volume, which is the maximum at the electron exit surface, is

determined (Goldstein, 1979). Electrons and holes are generated inside a generation volume,

via some electron-electron interactions. They can diffuse in a material, and the distribution

of electron-hole pairs is dominated by the diffusion of minority carriers. The stationary

density of minority carriers at a position r, Δ n(r) obeys the differential equation of

continuity, div[grad Δ n(r)] D - Δ n(r)/τ(r) + g(r) = 0, in which D is the diffusion constant for minority carriers, τ is the mean recombination lifetime, and g is the generation rate of

electron-hole pairs. The distribution of minority carriers has been discussed theoretically

In-Situ Analysis of Optoelectronic Properties of Semiconductor Nanostructures

and Defects in Transmission Electron Microscopes

243

(e.g., Everhart & Hoff, 1971, Donolato & Venturi, 1982), and the range in which minority

carriers exist is expected to be twice as large as a generation volume at most, for thin

materials. Therefore, the spatial resolution of CL measurements can be approximated to the

maximum diameter of a generation volume. The typical resolution is the order of 102 nm.

2.1.2 CL spectroscopy and analysis

CL lights are emitted via various radiative electronic transitions. One transition is the

recombination between an electron in the conduction band and a hole in the valence band (a

band-to-band transition), which is typical in direct gap semiconductors at high

temperatures. At a temperature T at which kT ( k is the Boltzma