Discrete Time Systems by Mario A. Jordan and Jorge L. Bustamante - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

index-496_19.png

484

Discrete Time Systems

2.4 The Neimark-Sacker bifurcation for a class of discrete-time dynamical systems with

delay

A two dimensional discrete-time dynamical system with delay is defined by the equations

xn+1 = xn + f 1( xn, yn, α)

yn+1 = yn + f 2( xnm, yn, α)

(13)

where α IR, f 1, f 2 : IR 3 → IR are seamless functions, so that for any | α| small enough, the system f 1( x, y, α) = 0, f 2( x, y, α) = 0, admits a solution ( x, y) T IR 2.

Using the translation xn xn + x, yn yn + y, and denoting the new variables with the

same notations xn, yn, system (13) becomes:

xn+1 = xn + f ( xn, yn, α)

yn+1 = yn + g( xnm, yn, α)

(14)

where:

f ( xn, yn, α) = f 1( xn + x, yn + y, α); g( xnm, yn, α) = f 2( xnm + x, yn + y, α).

With the change of variables x 1 = xnm, x 2 = xn−( m−1), . . . , xm = xn−1, xm+1 = xn, xm+2 =

yn, application (14) associated to the system is:

x 1

x 2

x 2 ⎟

.

.

⎜ . ⎟ → ⎜

.

⎜ .. ⎟

xm+1 + f( xm+1, xm+2, α) ⎠ .

(15)

xm+1 ⎠

xm+2 + g( x 1, xm+2, α)

xm+2

We use the notations:

a 10 = ∂ f (

(

0, 0, α), a

0, 0, α),

xm+1

01 =

∂ f

∂xm+2

b 10 = ∂g (

(

0, 0, α), b

0, 0, α)

x 1

01 =

∂g

∂xm+2

a 20 =

2 f

(

(

0, 0, α),

a

0, 0, α),

xm+1 ∂xm+1

11 =

2 f

∂xm+1 ∂xm+2

a 02 =

2 f

(

(

0, 0, α),

a

0, 0, α),

xm+2 ∂xm+2

30 =

3 f

∂xm+1 ∂xm+1 ∂xm+1

(16)

a 21 =

3 f

(

(

0, 0, α), a

0, 0, α),

xm+1 ∂xm+1 ∂xm+2

12 =

3 f

∂xm+1 ∂xm+2 ∂xm+2

a 03 =

3 f

(

0, 0, α)

xm+2 ∂xm+2 ∂xm+2

index-497_1.png

index-497_2.png

index-497_3.png

index-497_4.png

index-497_5.png

index-497_6.png

index-497_7.png

index-497_8.png

index-497_9.png

index-497_10.png

index-497_11.png

index-497_12.png

index-497_13.png

index-497_14.png

index-497_15.png

index-497_16.png

index-497_17.png

index-497_18.png

index-497_19.png

index-497_20.png

index-497_21.png

index-497_22.png

index-497_23.png

index-497_24.png

index-497_25.png

Discrete Deterministic and Stochastic Dynamical Systems with Delay - Applications

485

b 20 =

2 g (

(

0, 0, α),

b

0, 0, α),

x 1 ∂x 1

11 =

2 g

∂x 1 ∂xm+2

b 02 =

2 g

(

(

0, 0, α),

b

0, 0, α),

xm+2 ∂xm+2

30 =

3 g

∂x 1 ∂x 1 ∂x 1

(17)

b 21 =

3 g

(

(

0, 0, α),

b

0, 0, α),

x 1 ∂x 1 ∂xm+2

12 =

3 g

∂x 1 ∂xm+2 ∂xm+2

b 03 =

3 g

(

0, 0, α).

xm+2 ∂xm+2 ∂xm+2

With (16) and (17) from (15) we have:

Proposition 2.4. ((Mircea et al., 2004)) (i) The Jacobian matrix associated to (15) in (0, 0) T is:

0 1 . . .

0

0

⎜ 0 0 . . .

0

0

A = ⎜ . .

.

.

.. ..

..

..

⎟ .

(18)

0 0 . . . 1 + a

10

a 01

b 10 0 . . .

0

1 + b 01

(ii) The characteristic equation of A is:

λm+2 − (2 + a 10 + b 01) λm+1 + (1 + a 10)(1 + b 01) λ a 01 b 10 = 0.

(19)

(iii) If μ = μ( α) is an eigenvalue of (19), then the eigenvector q C m+2, solution of the system Aq = μq, has the components:

q 1 = 1, qi = μi−1, i = 2, . . . , m + 1, qm+2 =

b 10

μ

.

(20)

1 − b 01

The eigenvector p C m+2 defined by AT p = μp has the components

( μ − 1 − a

p

10 )( μ − 1 − b 01)

1 =

p

m( μ − 1 − a

1, i = 2, . . . , m,

10)( μ − 1 − b 01) + μ(2 μ − 2 − a 10 − b 01) , pi =

1

μi−1

(21)

pm+1 =

1

p

μm−1( μ − 1 − a

1.

10) p 1, pm+2 = μ

b 10

The vectors q, p satisfy the condition:

m+2

< q, p >= ∑ qip =

i

1.

i=1

The proof is obtained by straight calculation from (15) and (18).

The following hypotheses are taken into account:

H1. The characteristic equation (19) has one pair of conjugate eigenvalues μ( α), μ( α) with

their absolute values equal to one, and the other eigenvalues have their absolute values less

than one.

index-498_1.png

index-498_2.png

index-498_3.png

index-498_4.png

486

Discrete Time Systems

H2. The eigenvalues μ( α), μ( α) intersect the unit circle for α = 0, and satisfy the transversality

condition

d | μ( α)|

α=0 = 0.

H3. If arg( μ( α)) = θ( α), and θ 0 = θ(0), then eiθ 0 k = 1, k = 1, 2, 3, 4.

From H2 we notice that for all | α| small enough, μ( α) is given by:

μ( α) = r( α) eiθ( α)

with r(0) = 1, θ(0) = θ 0, r (0) = 0. Thus r( α) = 1 + β( α) where β(0) = 0 and β (0) = 0.

Taking β as a new parameter, we have:

μ( β) = (1 + β) eiθ( β)

(22)

with θ(0) = θ 0. From (22) for β < 0 small enough, the eigenvalues of the characteristic

equation (19) have their absolute values less than one, and for β > 0 small enough, the

characteristic equation has an eigenvalue with its absolute value greater than one. Using

the center manifold Theorem (Kuznetsov, 1995), application (15) has a family of invariant

manifolds of two dimension depending on the parameter β. The restriction of application (15)

to this manifold contains the essential properties of the dynamics for (13). The restriction of

application (15) is obtained using the expansion in Taylor series until the third order of the

right side of application (15).

2.5 The center manifold, the normal form

Consider the matrices:

A 1 =

a 20 a 11 , C

, D

a

1 =

a 30 a 21

1 =

a 21 a 12

11 a 02

a 21 a 12

a 12 a 03

A 2 =

b 20 b 11 , C

, D

b

2 =

b 30 b 21

2 =

b 21 b 12

11 b 02

b 21 b 12

b 12 b 03

with the coefficients given by (16) and (17).

Denoting by x = ( x 1, . . . , xm+2) ∈ IRm+2, application (15), is written as x F( x), where F( x)= ( x 2, . . . , xm, xm+1 + f ( xm+1, xm+2, α), xm+2 + g( x 1, xm+2, α)).

The following statements hold:

Proposition 2.5. (i) The expansion in Taylor series until the third order of function F( x) is:

F( x) = Ax + 1 B( x, x) + 1 C( x, x, x) + O(|§| ),

(23)

2

6

where A is the matrix (18), and

B( x, x)

= (0, . . . , 0, B 1( x, x), B 2( x, x)) T,

C( x, x, x) = (0, . . . , 0, C 1( x, x, x), C 2( x, x, x)) T,

index-499_1.png

index-499_2.png

index-499_3.png

index-499_4.png

index-499_5.png

index-499_6.png

index-499_7.png

index-499_8.png

index-499_9.png

index-499_10.png

index-499_11.png

index-499_12.png

index-499_13.png

index-499_14.png

index-499_15.png

index-499_16.png

index-499_17.png

index-499_18.png

index-499_19.png

index-499_20.png

index-499_21.png

index-499_22.png

index-499_23.png

index-499_24.png

index-499_25.png

index-499_26.png

index-499_27.png

index-499_28.png

index-499_29.png

index-499_30.png

index-499_31.png

index-499_32.png

index-499_33.png

index-499_34.png

index-499_35.png

index-499_36.png

index-499_37.png

index-499_38.png

index-499_39.png

index-499_40.png

index-499_41.png

index-499_42.png

index-499_43.png

index-499_44.png

index-499_45.png

index-499_46.png

index-499_47.png

index-499_48.png

index-499_49.png

index-499_50.png

index-499_51.png

index-499_52.png