Discrete Time Systems by Mario A. Jordan and Jorge L. Bustamante - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

index-503_9.png

index-503_10.png

index-503_11.png

Discrete Deterministic and Stochastic Dynamical Systems with Delay - Applications

491

Using the change of variables x 1 = xnm, . . . , xm = xn−1, xm+1 = xn, the application

associated to (43) is:

x 1

x 2

⎜ . ⎟

.

.

⎜ .. ⎟ → ⎜

.

xm

xm+1

⎠ .

(44)

xm+1

kw ak f ( x 1) + xm+1

The fixed point of (44) is ( x∗, . . . , x∗) T IRm+1, where x∗ satisfies relation w = a f ( x∗). With the translation x x + x∗, application (44) can be written as:

x 1

x 2

⎜ . ⎟

.

.

⎜ .. ⎟ → ⎜

.

xm

xm+1

(45)

xm+1

kw akg( x 1) + xm+1

where g( x 1) = f ( x 1 + x∗).

The following statements hold:

Proposition 3.1. ((Mircea et al., 2004)) (i) The Jacobian matrix of (45) in 0 ∈ IRm+1 is

0

1 0 . . . 0

0

0 1 . . . 0 ⎟

A = ⎜

⎜ . . . . . . . . . . . . . . . ⎟

(46)

0

0 0 . . . 1 ⎠

akρ 1 0 0 . . . 1

where ρ 1 = g (0) .

(ii) The characteristic equation of A is:

λm+1 − λm + akρ 1 = 0.

(47)

(iii) If μ C is a root of (47), the eigenvector q IRm+1 that corresponds to the eigenvalue μ, of the

matrix A, has the components:

qi = μi−1,

i = 1, . . . , m + 1

and the components of the eigenvector p IRm+1 corresponding to μ of the matrix AT are:

p 1 = −

akρ 1

p

p

p

μ

, p

m+1 − makρ

i =

1

1, i = 2, . . . , m − 1, pm = μ 2 − μ 1, pm+1 = − μ

1.

1

μi−1

1

akρ 1

m+1

The vectors p IRm+1 , q IRm+1 satisfy the relation piqi = 1 .

i=1

The following statements hold:

index-504_1.png

index-504_2.png

index-504_3.png

index-504_4.png

index-504_5.png

index-504_6.png

index-504_7.png

index-504_8.png

index-504_9.png

index-504_10.png

index-504_11.png

index-504_12.png

index-504_13.png

index-504_14.png

index-504_15.png

index-504_16.png

index-504_17.png

index-504_18.png

index-504_19.png

index-504_20.png

index-504_21.png

index-504_22.png

index-504_23.png

index-504_24.png

index-504_25.png

index-504_26.png

index-504_27.png

index-504_28.png

index-504_29.png

index-504_30.png

index-504_31.png

index-504_32.png

index-504_33.png

492

Discrete Time Systems

Proposition 3.2. (i) If m = 2 , equation (47) becomes:

λ 3 − λ 2 + akρ 1 = 0.

(48)

Equation (48) has two complex roots with their absolute values equal to 1 and one root with the absolute

5 − 1

5 − 1

value less than 1, if and only if k =

. For k = k

, equation (48) has the roots:

2

0 =

1

2 1

λ 1,2 = exp (± ( k 0) i),

θ(

1 +

5

a 0) = arccos

.

(49)

4

(ii) With respect to the change of parameter

k = k( β) = k 0 + g( β)

where:

√5+1

g( β) =

1 + 4(1 + β)6 − (1 + β)2 −

2 k 0 ρ 1

equation (49) becomes:

λ 3 − λ 2 + ak( β) ρ 1 = 0.

(50)

The roots of equation (50) are:

μ 1,2( β) = (1 + β)exp (± ( β)), λ( β) = − ak( β) ρ 1

(1 + β)2

where:

(

ω( β) =

1 + β)2 +

1 + 4(1 + β)6

arccos

.

4(1 + β)2

(iii) The eigenvector q IR 3 , associated to the μ = μ( β) , for the matrix A has the components:

q 1 = 1,

q 2 = μ,

q 3 = μ 2

and the eigenvector p IR 3 associated to the eigenvalue μ = μ( β) for the matrix AT has the

components:

p 1 =

akρ 1

, p

, p

.

2 akρ

2 =

μ 2

3 =

μ

1 − μ 3

μ 3 − 2 akρ 1

μ 3 − 2 akρ 1

(iv) a 0 is a Neimark-Sacker bifurcation point.

Using Proposition 3.2, we obtain:

Proposition 3.3. The solution of equation (43) in the neighborhood of the fixed point x∗ ∈ IR is:

un = x∗ + zn + zn + 1 w 1

w 1

2 20 z 2 n + w 111 znzn + 12 02 z 2 n

xn = x∗ + q 3 zn + q 3 zn + 1 w 3

w 3

2 20 z 2 n + w 311 znzn + 12 02 z 2 n

index-505_1.png

index-505_2.png

index-505_3.png

index-505_4.png

index-505_5.png

index-505_6.png

index-505_7.png

index-505_8.png

index-505_9.png

index-505_10.png

index-505_11.png

index-505_12.png

index-505_13.png

index-505_14.png

index-505_15.png

index-505_16.png

index-505_17.png

index-505_18.png

Discrete Deterministic and Stochastic Dynamical Systems with Delay - Applications

493

where:

μ 2( μ 2 − 1) h 1 − ( μ 2 − 1) h 2 + h 3

w 1 =

20

20

20

= μ 2

= μ 4

μ 2

20

w 1

h 1

w 1

h 1

h 2

μ

, w 2

6 − μ 4 + akρ

20

20

20, w 320

20

20

20

1

w 1 = h 311 , w 2 = w 1 − h 1

= w 1 − h 1 − h 2

11

akρ

11

11

11, w 311

11

11

11

1

h 1 =

)

=

)

=

)

20

4 akρ 2( p 3 + p 3 , h 220

akρ 1( p 3 q 2 + p 3 q 2 , h 320

4 akρ 2(1 + p 3 q 3 + p 3 q 3

h 1 = h 1

= h 2

= h 3

11

20, h 211

20, h 311

20

and zn C is a solution of equation:

zn+1 = μzn − 1 p

p

kaρ

+ ρ

2 3 akρ 2( z 2 n + 2 znzn + z 2 n) + 12 3(− kaρ 1 w 120

1 w 111

3 ),

rho 1 = f (0),

ρ 2 = f (0), ρ 3 = f (0) .

Let

( μ − 3 − 2 μ)

| p

C

3|2

1( β) = − p 3 a 2 k 2 ρ 22

+ a 2 k 2 ρ 22

+ ak| ρ 2 p 3| + p

akρ

+ ρ

2( μ 2 − μ)( μ − 1)

1 − μ

2( μ 2 − μ)

3 (− akρ 1 w 120

1 w 111

3 )

and

l(0) = Re(exp (− ( a 0)) C 1(0)).

If l(0) < 0 , the Neimark–Sacker bifurcation is supercritical (stable).

The model of an Internet network with r links and a single source, can be analyzed in a similar

way.

The perturbed stochastic equation of (43) is:

xn+1 = xn αk f ( xnm) + kw + ξnb( xn x∗)

(51)

and x∗ satisfies the relation w = a f ( x∗), where E( ξn) = 0, E( ξ 2 n) = σ > 0.

We study the case m = 2. Using (46) the linearized equation of (51) has the matrices:

0

1 0

0 0 0

A

1 =

0

0 1

, B =

0 0 0

akρ 1 0 1

0 0 b

Using Proposition 2.1, the characteristic polynomial of the linearized system of (51) is given

by:

P 2( λ) = ( λ 3 − (1 + σb 2) λ 2 − a 2 k 2 ρ 2)( λ 3 +

)

1

akρ 1 λ + a 2 k 2 ρ 21 .

If the roots of P 2( λ) have their absolute values less than 1, then the square mean values of the

solutions for the linearized system of (51) are asymptotically stable. The analysis of the roots

for the equation P 2( λ) = 0 can be done for fixed values of the parameters.

The numerical simulation can be done for: w = 0.1, a = 8 and f ( x) = x 2/(20 − 3 x).

index-506_1.png

index-506_2.png

index-506_3.png

index-506_4.png

index-506_5.png

index-506_6.png

index-506_7.png

index-506_8.png

index-506_9.png

index-506_10.png

index-506_11.png

index-506_12.png

index-506_13.png

index-506_14.png

index-506_15.png

index-506_16.png

index-506_17.png

index-506_18.png

494

Discrete Time Systems

4. A discrete economic game with delay

The economic game is described by a number of firms that enter the market with a

homogeneous consumption product at different moments n, where n IN. In what follows

we consider two firms F 1, F 2 and x, y the state variables of the model that represent the

firms’outputs. The price function of the product (the inverse demand function) is p : IR+ →

IR+, derivable function with lim p( x) = 0, lim p( x) = ∞ and p ( x) < 0. The cost functions x→∞

x→0+

are Ci : IR+ → IR+, i = 1, 2, derivable functions with C ( x) = 0, C ( x) ≥ 0. The profit i

i

functions of the firms, πi : IR 2+ → IR+, i = 1, 2, are given by:

π 1( x, y) = p( x + y) x C 1( x), π 2( x, y) = p( x + y) y C 2( y).

The non-cooperative game F 1, F 2, denoted by Γ = ( IR 2+, π 1, π 2) is called deterministic economic

game. The Nash solution of Γ is called the solution of the det