Collaborative Statistics by Barbara Illowsky, Ph.D. and Susan Dean - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

deviation.

Standard Error of the Mean

The standard deviation of the distribution of the sample means, σ

√ .

n

Standard Normal Distribution

A continuous random variable (RV) X~N (0, 1) .. When X follows the standard normal

distribution, it is often noted as Z~N (0, 1).

Statistic

A numerical characteristic of the sample. A statistic estimates the corresponding population

parameter. For example, the average number of full-time students in a 7:30 a.m. class for this

term (statistic) is an estimate for the average number of full-time students in any class this term

(parameter).

Student’s-t Distribution

Investigated and reported by William S. Gossett in 1908 and published under the pseudonym

Student. The major characteristics of the random variable (RV) are:

• It is continuous and assumes any real values.

• The pdf is symmetrical about its mean of zero. However, it is more spread out and flatter at

the apex than the normal distribution.

• It approaches the standard normal distribution as n gets larger.

• There is a "family" of t distributions: every representative of the family is completely

defined by the number of degrees of freedom which is one less than the number of data.

Student-t Distribution

T Tree Diagram

The useful visual representation of a sample space and events in the form of a “tree” with

branches marked by possible outcomes simultaneously with associated probabilities

(frequencies, relative frequencies).

Type 1 Error

The decision is to reject the Null hypothesis when, in fact, the Null hypothesis is true.

Type 2 Error

The decision is to not reject the Null hypothesis when, in fact, the Null hypothesis is false.

U Uniform Distribution

A continuous random variable (RV) that has equally likely outcomes over the domain,

a < x < b. Often referred as the Rectangular distribution because the graph of the pdf has the

form of a rectangle. Notation: X~U (a, b). The mean is µ = a+b and the standard deviation is

2

σ =

(b−a)2 The probability density function is f (X) = 1 for a < x < b or a ≤ x ≤ b. The

12

b−a

cumulative distribution is P (X ≤ x) = x−a .

b−a

Available for free at Connexions <http://cnx.org/content/col10522/1.40>

GLOSSARY

679

V Variable (Random Variable)

A characteristic of interest in a population being studied. Common notation for variables are

upper case Latin letters X, Y, Z,...; common notation for a specific value from the domain (set of

all possible values of a variable) are lower case Latin letters x, y, z,.... For example, if X is the

number of children in a family, then x represents a specific integer 0, 1, 2, 3, .... Variables in

statistics differ from variables in intermediate algebra in two following ways.

• The domain of the random variable (RV) is not necessarily a numerical set; the domain may

be expressed in words; for example, if X = hair color then the domain is {black, blond, gray,

green, orange}.

• We can tell what specific value x of the Random Variable X takes only after performing the

experiment.

Variance

Mean of the squared deviations from the mean. Square of the standard deviation. For a set of

data, a deviation can be represented as x − x where x is a value of the data and x is the sample

mean. The sample variance is equal to the sum of the squares of the deviations divided by the

difference of the sample size and 1.

Venn Diagram

The visual representation of a sample space and events in the form of circles or ovals showing

their intersections.

Z z-score

The linear transformation of the form z = x− µ . If this transformation is applied to any normal

σ

distribution X~N ( µ, σ) , the result is the standard normal distribution Z~N (0, 1). If this

transformation is applied to any specific value x of the RV with mean µ and standard deviation

σ , the result is called the z-score of x. Z-scores allow us to compare data that are normally

distributed but scaled differently.

Available for free at Connexions <http://cnx.org/content/col10522/1.40>

680

INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords

do not necessarily appear in the text of the page. They are merely associated with that section. Ex.

apples, § 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

"

"hypothesis testing.", 377

condition, § 3.3(124)

conditional, § 3.2(122), § 3.11(144), 230

A A AND B, § 3.2(122)

conditional probability, 123

A OR B, § 3.2(122)

confidence interval, 328, 336

accessibility, § (5)

confidence intervals, 339, 377

addition, § 3.4(127)

confidence level, 329, 339

additional, § (5)

contingency, § 3.5(131), § 3.9(141)

adoption, § (5)

contingency table, 131, 481

alternate hypothesis, § 13.2(584), § 13.3(585)

continuity correction factor, 299

ANOVA, § 13.1(583), § 13.2(584), § 13.3(585),

Continuous, § 1.5(18), 18, § 1.10(38), § 1.12(42),

§ 13.4(589), § 13.5(593), § 14.5.4(649)

§ 5.1(221), § 5.2(223), § 5.3(226), § 5.4(233),

answer, § 1.8(33)

§ 5.5(239), § 5.6(240), § 5.7(243), § 5.8(245),

appendix, § 14.3(632)

§ 5.9(251), § 5.10(254), § 14.4.2(637)

area, § 5.2(223)

continuous random variable, 233

article, § 14.4.3(640)

convenience, § 1.10(38)

average, § 1.4(16), § 4.3(169)

Convenience sampling, § 1.6(24)

B

Counting, § 1.5(18)

bar, § 2.4(63)

critical value, 267

Bernoulli, § 4.5(172), § 4.15(192)

cumulative, § 1.9(33), § 1.10(38), § 1.12(42),

Bernoulli Trial, 173

§ 1.13(50)

binomial, § 4.4(172), § 4.5(172), § 4.9(183),

cumulative distribution function (CDF), 234

§ 4.15(192)

Cumulative relative frequency, 34

binomial distribution, 381

curve, § 13.4(589)

binomial probability distribution, 173

bivariate, § 14.4.5(643)

D Data, § 1.1(13), § 1.2(13), 13, § 1.4(16), 17,

box, § 2.5(68), § 2.11(90), § 2.13(95), § 5.10(254)

§ 1.5(18), § 1.7(31), § 1.10(38), § 1.11(39),

boxes, § 2.4(63)

§ 1.12(42), § 1.13(50), § 2.1(59), § 2.2(59),

C

§ 2.4(63), § 14.3(632), § 14.4.1(635),

cards, § 4.17(205)

§ 14.4.5(643), § 14.5.2(647)

categorical, § 1.4(16)

degrees of freedom, 336, § 13.3(585),

center, § 2.6(71)

§ 13.4(589), § 13.5(593)

central, § 14.4.2(637)

degrees of freedom (df), 431

Central Limit Theorem, § 7.2(290), § 7.3(293),

descriptive, § 1.2(13), § 2.2(59), § 2.3(60),

§ 7.10(318), 387

§ 2.6(71), § 2.11(90), § 2.13(95)

chance, § 3.2(122), § 3.3(124)

deviation, § 2.11(90), § 2.13(95)

chi, § 11.4(474), § 11.5(481)

diagram, § 3.6(134), § 3.7(135)

Chi-Square, § 11.7(488), § 14.5.3(648), § 15(671)

dice, § 4.18(209)

CLT, 294

Discrete, § 1.5(18), 18, § 1.10(38), § 1.12(42),

cluster, § 1.10(38), § 1.14(52)

§ 4.1(167), § 4.2(168), § 4.3(169), § 4.4(172),

cluster sample, § 1.6(24)

§ 4.5(172), § 4.6(175), § 4.7(178), § 4.8(180),

collaborative, § (1), § (5)

§ 4.9(183), § 4.10(185), § 4.15(192), § 4.16(202),

collection, 1

Available for free at Connexions <http://cnx.org/content/col10522/1.40>

INDEX

681

§ 4.17(205), § 4.18(209)

§ 14.4.1(635), § 14.4.2(637), § 14.4.3(640),

display, § 2.2(59)

§ 14.4.4(642), § 14.4.5(643), § 14.5.1(646),

distribution, § 4.1(167), § 4.2(168), § 4.5(172),

§ 14.5.2(647), § 14.5.3(648), § 14.5.4(649),

§ 4.6(175), § 4.7(178), § 4.8(180), § 4.10(185),

§ 14.6(650), § 14.7(651), § 14.8(656)

§ 4.16(202), § 4.17(205), § 4.18(209), § 5.1(221),

elementary statistics, § (11), § 2.13(95)

§ 5.2(223), § 5.3(226), § 5.4(233), § 5.5(239),

empirical, § 5.10(254)

§ 5.6(240), § 5.7(243), § 5.8(245), § 5.9(251),

equally likely, § 3.2(122), 122

§ 5.10(254), § 11.5(481), § 14.4.2(637),

error bound for a population mean, 329, 337

§ 14.5.3(648)

error bound„ 339

distribution is binomial, 339

event, § 3.2(122), 122, § 3.11(144)

dot plot, § 1.2(13)

exclusive, § 3.3(124), § 3.10(143), § 3.11(144)

exercise, § 1.14(52), § 2.13(95), § 3.9(141),

E elementary, § (1), § (5), § (9), § 2.1(59),

§ 3.13(157), § 4.15(192), § 4.16(202), § 4.17(205),

§ 2.2(59), § 2.3(60), § 2.6(71), § 2.7(76),

§ 4.18(209), § 5.6(240), § 5.7(243), § 5.9(251),

§ 2.8(79), § 2.9(81), § 2.10(89), § 2.11(90),

§ 5.10(254)

§ 2.12(93), § 2.14(112), § 3.4(127), § 3.5(131),

exercises, § 3.12(155)

§ 3.6(134), § 3.7(135), § 3.8(140), § 3.9(141),

expected, § 4.3(169)

§ 3.10(143), § 3.11(144), § 3.12(155), § 3.13(157),

expected value, 169

§ 4.1(167), § 4.2(168), § 4.3(169), § 4.4(172),

experiment, § 3.2(122), 122, § 4.1(167),

§ 4.5(172), § 4.6(175), § 4.7(178), § 4.8(180),

§ 4.5(172), § 4.7(178), § 4.8(180), § 4.17(205),

§ 4.9(183), § 4.10(185), § 4.12(188), § 4.13(189),

§ 4.18(209)

§ 4.14(191), § 4.15(192), § 4.16(202), § 4.17(205),

exponential, § 5.1(221), § 5.4(233), 233,

§ 4.18(209), § 5.1(221), § 5.2(223), § 5.3(226),

§ 5.5(239), § 5.7(243)

§ 5.4(233), § 5.5(239), § 5.6(240), § 5.7(243),

exponential distribution, 297

§ 5.8(245), § 5.9(251), § 5.10(254), § 6.1(261),

§ 6.2(262), § 6.3(263), § 6.4(265), § 6.5(265),

F f, § 15(671)

§ 6.6(269), § 6.7(270), § 6.8(272), § 6.9(278),

F Distribution, § 13.1(583), § 13.2(584),

§ 6.10(280), § 6.11(283), § 7.1(289), § 7.4(294),

§ 13.3(585), § 13.4(589), § 13.5(593),

§ 7.5(301), § 7.6(302), § 7.7(305), § 7.8(312),

§ 14.5.4(649)

§ 7.9(314), § 8.1(327), § 8.2(329), § 8.3(336),

F Ratio, § 13.3(585)

§ 8.4(339), § 8.5(344), § 8.6(345), § 8.7(347),

fit, § 11.4(474)

§ 8.8(349), § 8.9(351), § 8.10(361), § 8.11(364),

formula, § 3.8(140), § 4.9(183), § 5.5(239)

§ 8.12(367), § 8.13(369), § 9.1(377), § 9.2(378),

frequency, § 1.9(33), 34, § 1.10(38), § 1.11(39),

§ 9.3(379), § 9.4(380), § 9.5(381), § 9.6(381),

§ 1.12(42), § 1.13(50), § 1.14(52), 63, § 2.11(90),

§ 9.7(382), § 9.8(383), § 9.9(383), § 9.10(385),

§ 2.13(95), § 3.2(122)

§ 9.11(385), § 9.12(396), § 9.13(397), § 9.14(399),

function, § 4.2(168), § 4.4(172), § 4.5(172),

§ 9.15(401), § 9.16(403), § 9.17(416), § 9.18(419),

§ 4.6(175), § 4.7(178), § 4.9(183), § 4.16(202),

§ 10.1(429), § 10.2(430), § 10.3(433), § 10.4(435),

§ 5.1(221), § 5.3(226), § 5.4(233), § 5.6(240),

§ 10.5(437), § 10.6(442), § 10.7(443), § 10.8(445),

§ 5.7(243), § 5.8(245), § 5.9(251)

§ 10.9(447), § 10.10(459), § 10.11(461),

functions, § 5.2(223)

§ 11.1(471), § 11.2(472), § 11.3(472), § 11.4(474),

§ 11.5(481), § 11.8(488), § 11.9(491),

G geometric, § 4.4(172), § 4.6(175), § 4.9(183),

§ 11.10(492), § 11.11(494), § 11.12(496),

§ 4.15(192)

§ 11.13(498), § 11.14(507), § 11.15(511),

good, § 11.4(474)

§ 11.16(516), § 12.1(523), § 12.2(523),

Goodness-of-Fit, § 11.7(488)

§ 12.3(525), § 12.4(526), § 12.5(528), § 12.6(534),

graph, § 2.2(59), § 2.3(60), § 5.1(221), § 5.6(240),

§ 12.7(536), § 12.8(541), § 12.9(541),

§ 5.7(243), § 5.8(245), § 14.4.1(635)

§ 12.10(548), § 12.11(551), § 12.12(552),

guide, § (5)

§ 12.13(555), § 12.14(571), § 12.15(574),

H histogram, § 2.4(63), § 2.11(90), § 2.13(95),

§ 12.16(576), § 13.6(596), § 13.7(597),

§ 5.10(254)

§ 13.8(599), § 13.9(604), § 13.10(608),

Homework, § 1.12(42), § 2.11(90), § 2.13(95),

§ 14.1(613), § 14.2(622), § 14.3(632),

Available for free at Connexions <http://cnx.org/content/col10522/1.40>

682

INDEX

§ 3.9(141), § 3.12(155), § 3.13(157), § 4.15(192),

Normal, § 15(671)

§ 4.16(202), § 4.17(205), § 4.18(209), § 5.6(240),

Normal Approximation to the Binomial, 299

§ 5.7(243), § 5.8(245), § 5.9(251), § 5.10(254)

normal distribution, 336, 339, 380, § 13.5(593)

homogeneity, § 11.6(485), § 11.7(488)

normally distributed, 290, 293, 381

hypergeometric, § 4.4(172), § 4.7(178),

null hypothesis, 381, 382, 383, § 13.2(584),

§ 4.15(192)

§ 13.3(585)

hypergeometric probability, 178

numbers, § 4.3(169)

hypergeometrical, § 4.9(183)

numerical, § 1.4(16)

hypotheses, 378

hypothesis, § 14.4.3(640), § 14.4.4(642),

O One-Way Analysis of Variance, § 13.1(583),

§ 14.5.1(646), § 14.5.2(647)

§ 13.2(584), § 13.3(585)

hypothesis test, 381, 383, 385, § 13.2(584),

One-Way ANOVA, 584, § 14.5.4(649)

§ 13.3(585)

outcome, § 3.2(122), 122, § 3.3(124)

outlier, 60, 72

I

independence, § 11.5(481), § 11.7(488)

outliers, 71, 541

independent, § 3.3(124), 124, 128, § 3.10(143),

§ 3.11(144)

P p-value, 382, 383, 383, 383, 385

inferential, § 1.2(13)

pair, § 14.5.2(647)

inferential statistics, 327

parameter, § 1.4(16), 17, § 1.10(38), 327

interquartile range, 71

PDF, § 4.2(168)

Introduction, § 1.1(13), § 3.1(121), § 4.1(167)

percentile, § 2.6(71), § 2.11(90), § 2.13(95)

IQR, § 2.6(71)

percentiles, 71

plot, § 2.11(90), § 2.13(95), § 5.10(254)

K key terms, § 3.2(122)

point estimate, 327

Poisson, § 4.4(172), § 4.8(180), § 4.9(183),

L lab, § 1.14(52), § 3.13(157), § 4.17(205),

§ 4.15(192)

§ 4.18(209), § 5.10(254), § 7.10(318),

Poisson probability distribution, 180

§ 14.4.1(635), § 14.4.2(637), § 14.4.5(643)

population, § 1.4(16), 16, 31, § 1.10(38),

large, § 4.3(169)

§ 2.13(95), § 5.9(251), § 13.2(584), § 13.3(585)

law, § 4.3(169)

populations, § 13.5(593)

Law of Large Numbers, 294

practice, § 1.11(39), § 2.11(90), § 3.9(141),

leaf, § 2.3(60)

§ 3.10(143), § 3.12(155), § 4.16(202), § 5.6(240),

likelihood, § 1.3(16)

§ 5.7(243), § 5.9(251)

limit, § 14.4.2(637)

probability, § 1.3(16), 16, § 1.10(38), § 3.1(121),

location, § 2.6(71)

§ 3.2(122), 122, § 3.3(124), § 3.4(127), § 3.5(131),

long term, § 3.2(122)

§ 3.6(134), § 3.7(135), § 3.8(140), § 3.9(141),

long-term, § 3.13(157), § 4.3(169)

§ 3.10(143), § 3.11(144), § 3.12(155), § 3.13(157),

M

§ 4.2(168), § 4.3(169), § 4.4(172), § 4.5(172),

mean, 17, § 2.6(71), 76, § 2.11(90), § 2.13(95),

§ 4.6(175), § 4.7(178), § 4.8(180), § 4.9(183),

§ 4.3(169), 169, 290, 292, 295, § 14.5.1(646)

§ 4.10(185), § 4.16(202), § 4.17(205), § 4.18(209),

means, § 14.5.2(647)

§ 5.1(221), § 5.2(223), § 5.3(226), § 5.5(239),

means square, § 13.3(585)

§ 5.6(240), § 5.7(243), § 5.9(251)

measurement, § 1.7(31)

probability distribution function, 168

Measuring, § 1.5(18)

problem, § 2.13(95), § 4.15(192), § 14.4.4(642)

median, § 2.1(59), § 2.5(68), 68, § 2.6(71), 76,

project, § 14.4.1(635), § 14.4.2(637),

§ 2.11(90), § 2.13(95)

§ 14.4.5(643)

mode, § 2.6(71), 77, § 2.11(90), § 2.13(95)

proportion, § 1.4(16), 17, § 14.5.1(646),

modules, 1

§ 14.5.2(647)

multiplication, § 3.4(127)

mutually, § 3.3(124), § 3.10(143), § 3.11(144)

Q Qualitative, § 1.5(18), § 1.10(38), § 1.12(42)

mutually exclusive, 125, 128

Qualitative data, 18

N

Quantitative, § 1.5(18), § 1.10(38), § 1.12(42)

nonsampling errors, § 1.6(24)

Available for free at Connexions <http://cnx.org/content/col10522/1.40>

INDEX

683

Quantitative data, 18

standard error, 430

quartile, § 2.6(71), § 2.11(90), § 2.13(95)

standard error of the mean., 291

quartiles, § 2.5(68), 68, 71

standard normal distribution, 262

statistic, § 1.4(16), 17, § 1.10(38), 79

R random, § 1.3(16), § 1.10(38), § 1.12(42),

statistics, § (1), § (5), § (9), § 1.1(13), § 1.2(13),

§ 1.14(52), § 4.1(167), § 4.2(168), § 4.3(169),

13, § 1.3(16), § 1.5(18), § 1.6(24), § 1.7(31),

§ 4.4(172), § 4.5(172), § 4.6(175), § 4.7(178),

§ 1.8(33), § 1.9(33), § 1.10(38), § 1.11(39),

§ 4.8(180), § 4.9(183), § 4.10(185), § 4.15(192),

§ 1.12(42), § 1.13(50), § 1.14(52), § 2.1(59),

§ 4.16(202), § 4.17(205), § 4.18(209), § 5.1(221),

§ 2.2(59), § 2.3(60), § 2.6(71), § 2.7(76),

§ 5.2(223), § 5.3(226), § 5.4(233), § 5.5(239),

§ 2.8(79), § 2.9(81), § 2.10(89), § 2.11(90),

§ 5.6(240), § 5.7(243), § 5.8(245), § 5.9(251)

§ 2.12(93), § 2.13(95), § 2.14(112), § 3.1(121),

random sampling, § 1.6(24)

§ 3.2(122), § 3.3(124), § 3.4(127), § 3.5(131),

random variable, 167, 431, 434

§ 3.6(134), § 3.7(135), § 3.8(140), § 3.9(141),

randomness, § 1.3(16)

§ 3.10(143), § 3.11(144), § 3.12(155), § 3.13(157),

relative, § 1.9(33), § 1.10(38), § 1.12(42),

§ 4.1(167), § 4.2(168), § 4.3(169), § 4.4(172),

§ 1.13(50), § 2.13(95), § 3.2(122)

§ 4.5(172), § 4.6(175), § 4.7(178), § 4.8(180),

relative frequency, 34, 63

§ 4.9(183), § 4.10(185), § 4.12(188), § 4.13(189),

replacement, § 1.10(38), § 3.13(157)

§ 4.14(191), § 4.15(192), § 4.16(202), § 4.17(205),

representative, § 1.4(16)

§ 4.18(209), § 5.1(221), § 5.2(223), § 5.3(226),

resources, § (5)

§ 5.4(233), § 5.5(239), § 5.6(240), § 5.7(243),

review, § 3.12(155), § 4.16(202), § 5.9(251)

§ 5.8(245), § 5.9(251), § 5.10(254), § 6.1(261),

round, § 1.8(33)

§ 6.2(262), § 6.3(263), § 6.4(265), § 6.5(265),

rounding, § 1.8(33)

§ 6.6(269), § 6.7(270), § 6.8(272), § 6.9(278),

rule, § 3.4(127)

§ 6.10(280), § 6.11(283), § 7.1(289), § 7.2(290),

S

§ 7.3(293), § 7.4(294), § 7.5(301), § 7.6(302),

sample, § 1.4(16), 16, § 1.6(24), § 1.7(31),

§ 7.7(305), § 7.8(312), § 7.9(314), § 7.10(318),

§ 1.10(38), § 1.12(42), § 1.14(52), § 2.13(95),

§ 8.1(327), § 8.2(329), § 8.3(336), § 8.4(339),

§ 13.2(584), § 13.3(585), § 13.5(593),

§ 8.5(344), § 8.6(345), § 8.7(347), § 8.8(349),

§ 14.4.5(643)

§ 8.9(351), § 8.10(361), § 8.11(364), § 8.12(367),

Sample Means, § 7.2(290)

§ 8.13(369), § 9.1(377), § 9.2(378), § 9.3(379),

sample space, § 3.2(122), 122, 127, 136

§ 9.4(380), § 9.5(381), § 9.6(381), § 9.7(382),

samples, 31

§ 9.8(383), § 9.9(383), § 9.10(385), § 9.11(385),

Sampling, § 1.1(13), § 1.4(16), 16, § 1.6(24),

§ 9.12(396), § 9.13(397), § 9.14(399), § 9.15(401),

§ 1.7(31), § 1.10(38), § 1.11(39), § 1.12(42),

§ 9.16(403), § 9.17(416), § 9.18(419), § 10.1(429),

§ 1.13(50), § 1.14(52)

§ 10.2(430), § 10.3(433), § 10.4(435), § 10.5(437),

sampling distribution, 78

§ 10.6(442), § 10.7(443), § 10.8(445), § 10.9(447),

sampling errors, § 1.6(24)

§ 10.10(459), § 10.11(461), § 11.1(471),

sampling variability of a statistic, 83

§ 11.2(472), § 11.3(472), § 11.4(474), § 11.5(481),

set, § 14.3(632)

§ 11.8(488), § 11.9(491), § 11.10(492),

sheet, § 14.5.1(646), § 14.5.2(647), § 14.5.3(648)

§ 11.11(494), § 11.12(496), § 11.13(498),

simple, § 1.10(38)

§ 11.14(507), § 11.15(511), § 11.16(516),

simple random sampling, § 1.6(24)

§ 12.1(523), § 12.2(523), § 12.3(525), § 12.4(526),

single, § 14.5.1(646)

§ 12.5(528), § 12.6(534), § 12.7(536), § 12.8(541),

Sir Ronald Fisher, § 13.3(585)

§ 12.9(541), § 12.10(548), § 12.11(551),

size, § 1.7(31)

§ 12.12(552), § 12.13(555), § 12.14(571),

skew, § 2.6(71), § 13.4(589)

§ 12.15(574), § 12.16(576), § 13.1(583),

solution, § 14.5.1(646), § 14.5.2(647),

§ 13.2(584), § 13.3(585), § 13.4(589), § 13.5(593),

§ 14.5.3(648), § 14.5.4(649)

§ 13.6(596), § 13.7(597), § 13.8(599), § 13.9(604),

spread, § 2.6(71)

§ 13.10(608), § 14.1(613), § 14.2(622),

square, § 11.4(474), § 11.5(481)

§ 14.3(632), § 14.4.1(635), § 14.4.2(637),

standard, § 2.11(90), § 2.13(95)

§ 14.4.3(640), § 14.4.4(642), § 14.4.5(643),

standard deviation, 81, 336, 380, 381, 382, 385

Available for free at Connexions <http://cnx.org/content/col10522/1.40>

684

INDEX

§ 14.5.1(646), § 14.5.2(647), § 14.5.3(648),

Type I error, 379, 383

§ 14.5.4(649), § 14.6(650), § 14.7(651),

Type II error, 379

§ 14.8(656)

stem, § 2.3(60)

U uniform, § 5.1(221), § 5.3(226), § 5.5(239),

stemplot, § 2.3(60)

§ 5.6(240), § 5.10(254)

stratified, § 1.10(38), § 1.14(52)

uniform distribution, 226

stratified sample, § 1.6(24)

univariate, § 14.4.1(635), § 14.4.5(643)

Student’s-t distribution, 336, 381

usage, § (5)

student’s-t distribution., 380