(Lin et al., 2012) like Gracilaria, Kap-
Authors are thankful to the Direc-
paphycus, Porphyra and Ulva. As with
tor, ICAR-CIARI, Port Blair for provid-
any other transgenic technology, the safe-
ing necessary facilities for conduct of var-
ty issues associated with culture of genet-
ious studies and extending support and
ically modified seaweeds should be of
guidance.
prime consideration. Transgenic technol-
ogy has been attempted in Chlorophyta
References
(Huang et al., 1996), Rhodophyta (Wang
et al., 2010) and Phaeophyta (Zhang et
Aguirre-Lipperheide,
M.,
Estrada-
al., 2008). Production of valuable prod-
Rodríguez, F. J. and Evans, L. V.
ucts in an indoor cultivation system with
(1995). Facts, problems and need in
proper biosafety from transgenic kelp
seaweed tissue culture – an apprais-
sporophyte has been successfully demon-
al. Journal of Phycology 31, 677-
strated (Qin et al. , 2005).
688.
The general perception that com-
Ahmad, I., Bhagat, S., Simachalam, P.
pounds and chemicals produced from
and Srivastava, R. C. (2012). Mo-
natural resources are safe and pose less
lecular characterization of Syzygium
risk to health has brought seaweeds in the
cuminii from A&N Islands. Indian
limelight for extracting environmental
Journal of Horticulture 69, 306-
friendly natural compounds and chemi-
311.
cals. The development of species-specific
Baweja, P. and Sahoo, D. (2009). Re-
in vitro cell and tissue culture technology
generation studies in Grateloupia
is essential for use of other biotechnologi-
filicina (J.V. Lamouroux) C. Agardh
cal tools for genetic improvement and
– an important Carrageenophyte and
production of high value compounds from
edible seaweed. Algae 24, 163-168.
seaweeds. With plethora of problems
Bohra, P., Waman, A. A., Sakthivel, K.,
faced in seaweed cultivation, the interven-
Gautam, R. K. and Dam Roy, S.
tion of biotechnological tools is essential
(2016a). Plant Tissue Culture: A vi-
for overall growth of this sector.
able technique for augmenting the
ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 301
Genetic Resources Sustainability Bohra et al.
productivity of banana in Andaman
phyte marine algae. Marine Biology
and Nicobar Islands. Technical Bul-
95, 593–597.
letin, ICAR-CIARI, Port Blair. pp.
Huang, W. and Fujita, Y. (1997). Callus
1-12.
induction and thallus regeneration
Bohra, P., Waman, A.A. and Dam Roy,
insome species of red algae. Phyco-
S. (2016b). Khoon phal ( Haemato-
logia Research 45, 105–111.
carpus validus (Miers.) Bakh. ex F.
Huang, X., Weber, J. C., Hinson, T. K.,
Forman). Technical Bulletin, ICAR-
Matheison, A. C. and Minocha, S.
CIARI, Port Blair. pp. 1-8.
C. (1996). Transient expression of
Damodaran, T., Ahmad, I. and Naga-
the GUS reporter gene in the proto-
rajan, B. (2013). Bouea oppositifo-
plasts and partially digested cells of
lia - A fast disappearing native
Ulva lactuca L. (Chlorophyta). Bo-
mango
genetic
resource
tanica Marina 39, 467-474.
from Andamans: morphological and
Kaczyna, F. and Megnet, R. (1993). The
molecular evidences. Indian Journal
effects of glycerol and plant growth
of Horticulture 70, 161-164.
regulators on Gracilaria verrucosa
Damodaran, T., Kannan, R., Ahmad,
(Gigartinales, Rhodophyceae). Hy-
I., Srivastava, R.C., Rai, R. B. and
drobiologia 268, 57–64.
Umamaheshwari, S. (2012). As-
Hanzhi L., Song Q. and Peng J. (2012).
sessing genetic relationships among
Biotechnology of seaweeds: Facing
mango ( Mangifera indica L.) acces-
the coming decade. In: Se-Kwon
sions of Andaman Islands using in-
Kim (Eds), Handbook of marine
ter simple sequence repeat markers.
macroalgae: Biotechnology and Ap-
New Zealand Journal of Crop and
plied Phycology pp. 424-430.
Horticultural Sciences 40, 229-240.
Liu, Z. J. and Cordes, J. F. (2004).
Damodaran, T., Medhi, R.P., Kapil
DNA marker technologies and their
Dev, G., Damodaran, V., Rai, R.
applications in aquaculture genetics.
B. and Kavino, M. (2006). Identifi-
Aquaculture 238, 1-37.
cation of molecular markers linked
Mandal,
A.B.,
Thomas,
V.A.,
with differential flowering behavior
Elanchezhian, R. (2007). RAPD
of mangoes in Andaman and Nico-
Pattern of Costus speciosus Koen
bar Islands. Current Science 92,
Ex. Retz., An Important Medicinal
1054-1056.
Plant from the Andaman and Nico-
Dawes, C. J. and Koch, E. W. (1991).
bar Islands. Current Science 93,
Branch, micropropagules and tissue
369-373.
culture of the red algae Eucheuma
Murugan, C., Prabhu, S., Sathiyasee-
denticulatum and Kappaphycus al-
lan, R. and Pandey, R.P. (2016). A
varezii farmed in the Philippines.
checklist of plants ofAndaman and
Journal of Applied Phycology 6,
Nicobar islands (Eds. Paramjit
21–24.
Singh and Arisdason, W.). ENVIS
Enomoto, S. and Hirose, H. (1972). Cul-
Centre on Floral Diversity, Botani-
ture studies on artificially induced
cal Survey of India, Kolkata, India.
aplano spores and their development
Naik, G. V., Dandin, S. B., Tikader, A.,
in the marine alga Boergesenia
Pinto, M. V. (2015). Molecular Di-
forbesii (Harvey) Feldmann (Chlo-
versity of Wild Mulberry ( Mo-
rophyceae, Siphonocladales). Phy-
rus spp.) of Indian Subcontinent.
cologia 11, 119–122.
Indian Journal of Biotechnology 14,
Gusev, M. V., Tambiev, A. H., Kiri-
334-343.
kora, N. N., Shelyastina, N. N. and
Nair, N.V. and Mary, S. (2006). RAPD
Aslanyan, R. R. (1987). Callus
analysis reveals the presence of
formation in seven species of agaro-
mainland Indian and Indonesian
ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 302
Genetic Resources Sustainability Bohra et al.
forms of Erianthus arundinaceus
varezii (Gigartinales, Rhodophyta).
(Retz.) Jeswiet in the Andaman–
Journal of Phycology 39, 610–616.
Nicobar Islands. Current Science 90,
Russig A M and Cosson J (2001) Plant
1118-1122.
regeneration from protoplasts of En-
Pandey, R.P. and Diwakar, P.G. (2008).
teromorpha intestinalis (Chloro-
An integrated check-list flora of
phyta, Ulvophyceae) as seedstock
Andaman & Nicobar Islands, India .
for macroalgal culture. Journal of
Journal of Economic and Taxonom-
Applied Phycology 13, 103–108.
ic Botany 32, 403–500.
Sankaran, M., Damodaran, V., Singh,
Polne-Fuller, M. and Gibor, A (1987)
D. R., Jaisankar, I. and Jerard, B.
Callus and callus likegrowth in sea-
A. (2012). Characterization and Di-
weeds: induction and culture. Pro-
versity Assessment in Coconut Col-
ceedings of International Seaweed
lections of Pacific Ocean Islands
Symposium 12, 131–138.
and Nicobar Islands. African Jour-
Qin, S. and Tseng, C. (2005). Trans-
nal of Biotechnology 11, 16320-
forming kelp into a marine bioreac-
16329.
tor. Trends in Biotechnology 23,
Singh, D. R. and Srivastava, R. C.
264-268.
(2010). Genetic Diversity Analysis
Rajakrishna Kumar, G., Reddy, C. R.
among the Indigenous Orchids of
K. and Jha, B. (2007). Callus in-
Bay of Islands Using RAPD Mark-
duction and thallus regeneration
ers. Indian Journal of Horticulture
from the callus of phycocolloid
13, 142-145.
yielding seaweeds from the Indian
Singh, D. R., Singh, S., Minj, D., An-
coast. Journal of Applied Phycology
bananthan, V., Salim, K. M., Ku-
19, 15–25.
mari, C. and Varghese, A. (2012).
Rajakrishna Kumar, G., Reddy, C. R.
Diversity of Morinda citrifolia L.
K., Ganesan, M., Tiruppathi, S.,
in Andaman and Nicobar Islands
Dipakkore, S., Eswaran, K., Sub-
(India) assessed through morpholog-
ba Rao, P. V. and Jha, B. (2004).
ical and DNA markers. African
Tissue culture and regeneration of
Journal
of
Biotechnology
11,
thallus from callus of Gelidiella ac-
15214-15225.
erosa
(Gelidiales,
Rhodophyta).
Singh, S., Singh, D. R., Faseela, F.,
Phycologia 43, 596–602.
Kumar, N., Damodaran, V. and
Rajesh, M. K., Nagarajan, P., Jerard,
Srivastava, R. C. (2012). Diversity
B. A., Arunachalam, V. and
of 21 taro ( Colocasia esculenta (L.)
Dhanapal. R. (2008). Microsatellite
Schott)
accessions
variability of coconut accessions
of Andaman Islands. Genetic Re-
( Cocos
nucifera
L.)
sources and Crop Evolution 59,
from Andaman and Nicobar Islands.
821-829.
Current Science 94, 1627-1631.
Singh, S., Waman, A. A., Bohra, P.,
Reddy, C. R. K., Jha, B., Fujita, Y. and
Gautam, R. K. and Dam Roy, S.
Ohno, M. (2008). Seaweed micro-
(2016). Conservation and sustaina-
propagation techniques and their po-
ble utilization of horticultural biodi-
tentials: an overview. Journal of
versity in tropical Andaman and
Applied Phycology 20, 609–617.
Nicobar Islands, India. Genetic Re-
Reddy, C. R. K., Raja Krishna Kumar,
sources and Crop Evolution 63,
G., Eswaran, K., Siddhanta, A. K.
1431–1445.
and Tewari, A. (2003). In vitro so-
Subbaraju, D. P., Ramakrishna, T.,
matic embryogenesis and regenera-
Sreedhara, S. and Murthy, M.
tion of somatic embryos from pig-
(1981). Effects of some growth reg-
mented callus of Kappaphycus al-
ulators on Gracilaria corticata, an
ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 303
Genetic Resources Sustainability Bohra et al.
agarophyte. Aquatic Botany 10, 75–
Publications, New Delhi, India. pp.
80.
141-156.
Sudha, R., Singh, D. R., Sankaran, M.,
Waman, A. A. and Bohra P. (2016).
Singh, S., Damodaran, V. and
Sustainable development of medici-
Simachalam, P. (2013). Genetic di-
nal and aromatic Plants sector in In-
versity analysis of papaya ( Carica
dia: an overview. Science and Cul-
papaya
L.)
genotypes
ture 82, 245-250.
in Andaman Islands using morpho-
Waman, A. A. and Bohra, P. (2013).
logical and molecular markers. Afri-
Choice of explants- a determining
can Journal of Agricultural Re-
factor in tissue culture of Ashoka
search 8, 5187-5192.
( Saraca indica L.). International
Tatewaki, M. and Nagata, K. (1970).
Journal of Forest Usufructs Man-
Surviving protoplasts in vitro and
agement 14, 10-17.
their development in Bryopsis.
Wang, J., Jiang, P., Cui, Y., Deng, X.,
Journal of Phycology 6, 401–403.
Li, F., Liu, J. and Qin, S. (2010).
Uma, S., Siva, S. A., Saraswathi, M. S.,
Genetic transformation in Kap-
Durai, P., Sharma, T. V. R. S.,
paphycus alvarezii using micropar-
Singh, D. B., Selvarajan, R., Sa-
ticle bombardment: a potential strat-
thiamoorthy, S. (2005). Studies on
egy for germplasm improvement.
the origin and diversification of In-
Aquaculture
International
18,
dian wild banana ( Musa balbisiana)
1027–1034.
using arbitrarily amplified DNA
Yokoya,
N.
S.
and
Yoneshigue-
markers. Journal of Horticultural
Valentin, Y. (2011). Micropropaga-
Science and Biotechnology 80, 575-
tion as a tool for sustainable utiliza-
580.
tion and conservation of populations
Waman, A. A., Bohra, P., Sathyana-
of Rhodophyta. Brazilian Journal of
rayana, B. N. and Hanumantha-
Pharmacognosy 21, 334-339.
raya, B. G. (2015). In vitro ap-
Zhang, Y. C., Jiang, P., Gao, J. T.,
proaches in medicinal plants- a via-
Liao, J. M., Sun, S. L. and Shen,
ble strategy to strengthen the re-
Z. L. (2008). Recombinant expres-
source base of plant based systems
sion of rt-Pa gene (encoding Retep-
of medicines. In: Biotechnological
lase) in gametophytes of the sea-
approaches for sustainable devel-
weed Laminaria japonica (Laminar-
opment. Pullaiah, T. (ed.). Regency
iales, Phaeophyta). Science China
Life Sciences 51, 1116-1120.
© 2017 by the authors. Licensee, Editors and AIMST University, Ma-
laysia. This article is an open access article distributed under the terms
and conditions of the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).
ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 304
Biotechnology for Sustainability
Achievements, Challenges and Perspectives
Biotech Sustainability (2017), P305-321
Plantibodies for Global Health: Challenges and
Perspectives
Prasad Minakshi1,*, Basanti Brar1, Manimegalai Jyothi1, Ikbal1, Koushlesh Ranjan1,
Upendra Pradeep Lambe1 and Gaya Prasad2
1Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences,
Hisar 125004, Haryana, India; 2Sardar Vallabhbhai Patel University of Agriculture and
Technology, Meerut 250110, Uttar Pradesh, India; *Correspondence:
minakshi.abt@gmail.com; Tel: 09992923330
Abstract: Antibodies are the important part of adaptive immune system. Plants do not natu-
rally make the antibodies; but, they can be produced in plants by introducing antibody-
coding genes from humans and animals. Plant derived antibodies are called as plantibodies
and known to work in the same way as mammalian antibodies. The plantibodies bioproduc-
tion offers several advantages over the production of antibodies using mammals. Plants
are more economic than all other forms of creating antibodies and the technology for ob-
taining and maintaining them is already present. Plantibodies are safer in use because,
plants reduce the chance of coming in contact with pathogens. Plantibodies can be made at
an affordable cost using plants as the genetic engineering method