Biotechnology for Sustainability by Subhash Bhore, K. Marimuthu and M. Ravichandran [E - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

Acknowledgements

contaminated soils by bacteria.

World Journal of Microbiology and

Authors are thankful to Shri

Biotechnology, 33, 1-9.

Ramswaroop

Memorial

University,

Cycon,

M.,

A.

Mrozik

and

Z.

Barabanki, Uttar Pradesh, India for

Piotrowska-Seget

(2017).

providing facility and space for this work.

Bioaugmentation as a strategy for

the

remediation

of

pesticide-

References

polluted

soil:

A

review.

Chemosphere, 172, 52-71.

Agarwal, A. and Liu, Y. (2015).

Datta, S., J. Singh and S. Singh (2016).

Remediation technologies for oil-

Earthworms,

pesticides

and

contaminated sediments. Marine

sustainable agriculture: a review.

Pollution Bulletin 101, 483-90.

Environmental

Science

and

Agency, U. S. E. P. (1995). Bioventing

Pollution Research (international),

Principles and Practice. Bioventing

23, 8227-43.

Principles, Washington D.C, 1, 15-

Davison, J. (2005). Risk mitigation of

20.

genetically modified bacteria and

Alkorta, I., J. Hernández-Allica, J. M.

plants designed for bioremediation.

Becerril, I. Amezaga, I. Albizu

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 413

Biotech Sustainability (2017)

Bioremediation: A Biotechnology Tool for Sustainability Chandra et al.

Journal of Industrial Microbiology

Hinchee, R. E. (1994). Air sparging for

and Biotechnology, 32, 639-50.

site

remediation.

CRC

Lewis

Dua, M., A. Singh, N. Sethunathan and

Publishers.

A. K. Johri (2002). Biotechnology

Holmes, A., J. Govan and R. Goldstein

and bioremediation: successes and

(1998).

Agricultural

use

of

limitations. Applied Microbiology

Burkholderia

(Pseudomonas)

and Biotechnology, 59, 143-52.

cepacia: a threat to human health?

Dzionek, A., D. Wojcieszyńska and U.

Emerging Infectious Diseases, 4,

Guzik (2016). Natural carriers in

221-7.

bioremediation:

A

review.

Iyer, R. and A. Damania (2016). Draft

Electronic

Journal

of

Genome Sequence of Pseudomonas

Biotechnology, 19, 28 - 36.

putida CBF10-2, a Soil Isolate with

Gautam, V., L. Singhal and P. Ray

Bioremediation

Potential

in

(2011).

Burkholderia

cepacia

Agricultural

and

Industrial

complex: beyond pseudomonas and

Environmental Settings. Genome

acinetobacter. Indian Journal of

Announcements 4, 4, e00670-16

Medical Microbiology, 29, 4-12.

Jafari, M., Y. R. Danesh, E. M.

Gibbs, J. T., B. C. Alleman, R. D.

Goltapeh and A. Verma (2013).

Gillespie, E. A. Foote, S. E.

Bioremediation

and

Genetically

McCall, F. A. Snyder, J. E. Hicks,

Modified Organisms. Springer-

R. K. Crowe and J. Ginn (1999).

Verlag

Berlin

Heidelberg. 29,

Bioventing

Nonpetroleum

33811-3

Hydrocarbons.

IN

Engineered

Kadian, N., A. Gupta, S. Satya, R. K.

Approaches

for

In

Situ

Mehta and A. Malik (2008).

Bioremediation

of

Chlorinated

Biodegradation

of

herbicide

Solvent

Contamination.

Battelle

(atrazine) in contaminated soil using

Press, Columbus. OH, USA. pp 7-

various

bioprocessed

materials.

14

Bioresource Technology, 99, 4642-

Gifford, S., R. H. Dunstan, W.

7.

O'Connor, C. E. Koller and G. R.

Kadri, T., T. Rouissi, S. Kaur Brar, M.

MacFarlane

(2007).

Aquatic

Cledon, S. Sarma and M. Verma

zooremediation: deploying animals

(2017).

Biodegradation

of

to remediate contaminated aquatic

polycyclic aromatic hydrocarbons

environments.

Trends

in

(PAHs) by fungal enzymes: A

Biotechnology, 25, 60-5.

review. Journal of Environmental

Gillespie, I. M. and J. C. Philp (2013).

Sciences (China), 51, 52-74.

Bioremediation, an environmental

Kamaludeen, S. P., K. R. Arunkumar,

remediation technology for the

S.

Avudainayagam

and

K.

bioeconomy.

Trends

in

Ramasamy (2003). Bioremediation

Biotechnology, 31, 329-32.

of

chromium

contaminated

Hanson, J. R., C. E. Ackerman and K.

environments. Indian journal of

M. Scow (1999). Biodegradation of

experimental biology, 41, 972-85.

methyl tert-butyl ether by a bacterial

Kleijntjens, R. H. and K. C. A. M.

pure

culture.

Applied

and

Luyben (2000). Bioremediation.

Environmental Microbiology, 65,

Biotechnology, 11b, 329-347.

4788-92.

Koning, M., K. Hupe and R. Stegmann

Head, I. M. and R. P. Swannell (1999).

(2000).

Thermal

Processes,

Bioremediation

of

petroleum

Scrubbing/Extraction,

hydrocarbon contaminants in marine

Bioremediation and Disposal. 11b,

habitats.

Current

Opinion

in

306 - 317.

Biotechnology , 10, 234-9.

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 414

Biotech Sustainability (2017)

Bioremediation: A Biotechnology Tool for Sustainability Chandra et al.

Kulshreshtha, S. (2012). Current Trends

bioremediation:

barriers

and

in

Bioremediation

and

perspectives

at

European

Biodegradation.

Journal

of

contaminated

sites.

New

Bioremediation

and

Biotechnology, 32, 133-46.

Biodegradation, 3:e114.

McCauley,

P.

(1999a).

Land

Kumar, A., B. S. Bisht, V. D. Joshi and

Remediation and Pollution Control

T. Dhewa (2011). Review on

Division

(Treatment

and

Bioremediation

of

Polluted

Destruction branch), . Personal

Environment: A Management

communication. Chemist, U.S. EPA

Tool. International Journal of

National Risk Management and

Environmental Sciences, 1, 1079-

Research Laboratory. Web Site

1093

<http://www.cluin.org/products/newsltrs/t

Lange, C. C., L. P. Wackett, K. W.

trend/tt0899.htm#bioventing

Minton and M. J. Daly (1998).

McCauley, P. (1999b). Bioventing for

Engineering

a

recombinant

Enhanced Degradation of PAHs.

Deinococcus

radiodurans

for

Tech Direct. U.S. EPA, Web Site

organopollutant

degradation

in

<http://www.cluin.org/products/newsltrs/t

radioactive

mixed

waste

trend/tt0899.htm#bioventing>

environments.

Nature

Ozcan, F., C. T. Kahramanogullari, N.

Biotechnology, 16, 929-33.

Kocak, M. Yildiz, I. Haspolat and

Li, J. and R. Li (2017). Current research

E. Tuna (2012). Use of genetically

scenario

for

microcystins

modified

organisms

in

the

biodegradation - A review on

remediation of soil and water

fundamental knowledge, application

resources. Fresenius Environmental

prospects and challenges. Science of

Bulletin, 21, 3443 - 3447.

The Total Environment, 595, 615-

Paniagua-Michel, J. and A. Rosales

632.

(2015). Marine Bioremediation - A

Litchfield, C. D. (1993). In situ

Sustainable

Biotechnology

of

Bioremediation : Basis and Practice

Petroleum

Hydrocarbons

IN Biotreatment of Industrial and

Biodegradation in Coastal and

Hazardous Wastes, M.A. Levin and

Marine Environments. Journal of

Michael A Gealt (eds.)McGraw-

Bioremediationand Biodegradation,

Hill, Inc. 34, 167 -197

6,273

Lovley, D. R., D. E. Holmes and K. P.

Perez-Pantoja, D., R. De la Iglesia, D.

Nevin (2004). Dissimilatory Fe(III)

H. Pieper and B. Gonzalez (2008).

and Mn(IV) reduction. Advances in

Metabolic

reconstruction

of

Microbial Physiology, 49, 219-86.

aromatic compounds degradation

Macek,

T.,

K.

Francova,

L.

from the genome of the amazing

Kochankova, P. Lovecka, E.

pollutant-degrading

bacterium

Ryslava, J. Rezek, M. Sura, J.

Cupriavidus necator JMP134. FEMS

Triska, K. Demnerova and M.

Microbiology Reviews, 32, 736-94.

Mackova

(2004).

Qiu, Y., H. Pang, Z. Zhou, P. Zhang, Y.

Phytoremediation:

biological

Feng and G. D. Sheng (2009).

cleaning of a polluted environment.

Competitive

biodegradation

of

Reviews on Environmental Health,

dichlobenil and atrazine coexisting

19, 63-82.

in soil amended with a char and

Majone, M., R. Verdini, F. Aulenta, S.

citrate. Environmental Pollution,

Rossetti,

V.

Tandoi,

N.

157, 2964-9.

Kalogerakis, S. Agathos, S. Puig,

Rajwade, J. M., K. M. Paknikar and J.

G. Zanaroli and F. Fava (2015). In

V. Kumbhar (2015). Applications

situ groundwater and sediment

of bacterial cellulose and its

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 415

Biotech Sustainability (2017)

Bioremediation: A Biotechnology Tool for Sustainability Chandra et al.

composites in biomedicine. Applied

Su, C., L. Jiang and W. Zhang (2014).

Microbiology and Biotechnology,

A

review

on

heavy

metal

99, 2491-511.

contamination in the soil worldwide:

Ramrakhiani, L., S. Ghosh and S.

Situation, impact and remediation

Majumdar

(2016).

Surface

techniques. Environmental Skeptics

Modification of Naturally Available

and Critics, 3, 24 - 38.

Biomass for Enhancement of Heavy

Tran, N. H., H. H. Ngo, T. Urase and

Metal

Removal

Efficiency,

K. Y. Gin (2015). A critical review

Upscaling

Prospects,

and

on characterization strategies of

Management Aspects of Spent

organic matter for wastewater and

Biosorbents: A Review. Applied

water

treatment

processes.

Biochemistry and Biotechnology,

Bioresource Technology, 193, 523-

180, 41-78.

33.

Rittmann, B. E. (1993). In Situ

Ulrich, A. C. and E. A. Edwards (2003).

Bioremediation:

When does

it

Physiological

and

molecular

work? National Academy Press

characterization

of

anaerobic

Washington, D.C. 1st Ed.

benzene-degrading mixed cultures.

Santisi, S., S. Cappello, M. Catalfamo,

Environmental Microbiology, 5, 92-

G. Mancini, M. Hassanshahian, L.

102.

Genovese, L. Giuliano and M. M.

Van Deuren, J. and T. Lloyd (2002).

Yakimov (2015). Biodegradation of

Remediation technologies screeing

crude oil by individual bacterial

matrix and reference guide. Federal

strains and a mixed bacterial

Remediation

technologies

consortium. Brazilian Journal of

Roundtable, 4th Ed.

Microbiology, 46, 377-87.

Vidali, M. (2001). Bioremediation: An

Schulz

-

Berendt,

V.

(2000).

overview.

Journal

of

Applied

Bioremediation

with

heap

Chemistry, 73,1163 - 1172.

technique, Biotechnology. 320-328.

Zhang, W., F. Jiang and J. Ou (2011).

11b, 2nd Ed.

Global pesticide consumption and

Shukla, A. K., S. N. Upadhyay and S.

pollution: with China as a focus.

K. Dubey (2014). Current trends in

International Academy of Ecology

trichloroethylene biodegradation: a

and Environmental Sciences, 1, 125

review.

Critical

Reviews

in

- 144.

Biotechnology, 34, 101-14.

© 2017 by the authors. Licensee, Editors and AIMST University,

Malaysia. This article is an open access article distributed under the

terms and conditions of the Creative Commons Attribution (CC BY)

license (http://creativecommons.org/licenses/by/4.0/).

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 416

Biotechnology for Sustainability

Achievements, Challenges and Perspectives

Biotech Sustainability (2017), P417-443

Sea Urchin - A New Potential Marine Bio-resource for

Human Health

M. Aminur Rahman1, *, Fatimah Md. Yusoff1, 2, Kasi Marimuthu3 and Yuji Arakaki4

1Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia,

43400 UPM Serdang, Selangor, Malaysia; 2Department of Aquaculture, Faculty of Agri-

culture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; 3Department

of Biotechnology, Faculty of Applied Sciences, AIMST University, 08100 Bedong, Kedah

Darul Aman, Malaysia; 4Department of Tourism, Faculty of International Studies, Meio

University, Nago, Okinawa-905-8585, Japan;

*Correspondence: aminur1963@gmail.com; Tel: +60 3-8947-2141

Abstract: Sea urchin gonads usually called as “Sea ur