Biotechnology for Sustainability by Subhash Bhore, K. Marimuthu and M. Ravichandran [E - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

Acknowledgements

Teeb, A. I. H. (2012). Effect of

seaweed and drainage water on

The author L. Satish sincerely

germination and seedling growth of

thanks the University Grants Commis-

tomato ( Lycopersicon spp.). Euphra-

sion, New Delhi, India for financial sup-

tes Journal of Agriculture Science 4,

port in the form of UGC-BSR SRF (UGC

24–39.

order no. F.4-1/2006 (BSR)/7-326/2011-

Beckett, R. P. and Van Staden, J.

BSR). Also the authors gratefully

(1989). The effect of seaweed con-

acknowledge the computational and bio-

centrate on the growth and yield of

informatics facility provided by the Ala-

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 206

Biotech Sustainability (2017)

Potential of Marine Algae Derived Extracts Lakkakula and Manikandan potassium stressed wheat. Plant Soil

chi, T. (1994). Antibiotic produc-

116, 29–36.

tion by the immobilized cyanobacte-

Beckett, R. P., Mathegka, A. D. M. and

rium, Scytonema sp. TISTR 8208,

Van Staden, J. (1994). Effect of

in a seaweed-type photobioreactor.

seaweed concentrate on yield of nu-

Journal of applied phycology, 6(5),

trient-stressed

tepary

bean

539-543.

( Phaseolus acutifolius Gray). Jour-

Crouch, I. J., Beckett, R. P. and Van

nal of Applied Phycology 6, 429–

Staden, J. (1990). Effect of sea-

430.

weed concentrate on the growth and

Briceno-Dominguez, D., Hernandez-

mineral nutrition of nutrient-stressed

Carmona, G., Moyo, M., Stirk, W.

lettuce. Journal of Applied Phycolo-

and Van Staden, J. (2014). Plant

gy 2, 269–272.

growth promoting activity of sea-

de Freitas, M. B. and Stadnik, M. J.

weed liquid extracts produced from

(2012). Race-specific and ulvan-

Macrocystispyrifera under different

induced defense responses in bean

pH and temperature conditions.

( Phaseolus vulgaris) against Colle-

Journal of Applied Phycology 26,

totrichum lindemuthianum. Physio-

2203–2210.

logical and Molecular Plant Pathol-

Caamal-Fuentes, E., Chale-Dzul, J.,

ogy 78, 8–13.

Moo-Puc, R., Freile-Pelegrin, Y.

de Freitas, M. B. and Stadnik, M. J.

and Robledo, D. (2013). Bio-

(2015). Ulvan-induced resistance in

prospecting of brown seaweed

Arabidopsis thaliana against Alter-

(Ochrophyta) from the Yucatan

naria brassicicola requires reactive

Peninsula: cytotoxic, antiprolifera-

oxygen

species

derived

from

tive, and antiprotozoal activities.

NADPH oxidase. Physiological and

Journal of Applied Phycology 26,

Molecular Plant Pathology 90, 49–

1009–1017.

56.

Caillot, S., Rat, S., Tavernier, M. L.,

Decker, E. L. and Reski, R. (2008).

Michaud,

P.,

Kovensky,

J.,

Current achievements in the produc-

Wadouachi, A., Clement, C.,

tion of complex biopharmaceuticals

Baillieul, F. and Petit, E. (2012).

with moss bioreactors. Bioprocess

Native and sulfated oligoglucu-

and Biosystems Engineering 31, 3–

ronans as elicitors of defence-

9.

related responses inducing protec-

El Modafar, C., Elgadda, M., Elbou-

tion against Botrytis cinerea of Vitis

tachfaiti, R., Abouraicha, E.,

vinifera. Carbohydrate Polymers 87,

Zehhar, N., Petit, E., El Alaoui-

1728–1736.

Talibi, Z., Courtois, B. and Cour-

Cao, G., Concas, A., Corrias, G., Li-

tois, J. (2012). Induction of natural

cheri, R., Orru, R. and Pisu, M.

defence accompanied by salicylic

(2012). A process for the production

acid-dependant systemic acquired

of useful materials to sustain

resistance in tomato seedlings in re-

manned space missions on Mars

sponse to bioelicitors isolated from

through in-situ resources utilization.

green algae. Scientia Horticulturae

Patent PCT/IB2012/053754

138, 55–63.

Carvalho, A. P., Meireles, L. A. and

FAO. (2012). Yearbook of fishery and

Malcata, F. X. (2006). Microalgal

aquaculture statistics, in: FAO (Ed.),

reactors: a review of enclosed sys-

Dataset global aquaculture produc-

tem designs and performances. Bio-

tion

1950–2012.

technology Progress 22, 490–1506.

http://www.fao.org/fishery/statistics

Chetsumon, A., Maeda, I., Umeda, F.,

/global-aquaculture-

Yagi, K., Miura, Y., and Mizogu-

production/query/en.

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 207

Biotech Sustainability (2017)

Potential of Marine Algae Derived Extracts Lakkakula and Manikandan FAO. (2013). Agriculture and environ-nology. Longman Scientific &

mental services discussion paper 03,

Technical, New York. pp. 161–238.

in: FAO (Ed.), Fish to 2030 pro-

Hernandez-Herrera, R. M., Santacruz-

spects for fisheries and aquaculture,

Ruvalcaba, F., Ruiz-Lopez, M. A.,

World Bank report number 83177-

Norrie,

J.

and

Hernandez-

GLB (Washington DC, United

Carmona, G. (2013). Effect of liq-

States).

uid seaweed extracts on growth of

Featonby-Smith, B. C. and Van

tomato seedlings ( Solanum lycoper-

Staden, J. (1983a). The effect of

sicum L.). Journal of Applied Phy-

seaweed concentrate on the growth

cology 26, 619–628.

of tomato plants in nematode infect-

Ibanez, E., Herrero, M., Mendiola, J.

ed soil. Scientia Horticulturae 20,

A. and Castro-Puyana, M. (2012).

137–146.

Extraction and characterization of

Featonby-Smith, B. C. and Van

bioactive compounds with health

Staden, J. (1983b). The effect of

benefits from marine resources:

seaweed concentrate and fertilizer

Macro and micro algae, cyanobacte-

on the growth of Beta vulgaris.

ria, and invertebrates. Hayes M.

Zeitschrift für Pflanzenphysiologie

(Ed.) Marine bioactive compounds:

112, 155–162.

Sources, characterization and appli-

Featonby-Smith, B. C. and Van

cations. pp. 55–98.

Staden, J. (1984). The effect of

Jayaraj, J., Wan, A., Rahman, M. and

seaweed concentrate and fertilizer

Punja, Z. K. (2008). Seaweed ex-

on growth and endogenous cytokin-

tract reduces foliar fungal diseases

in content of Phaseolus vulgaris.

on carrot. Crop Protection 27, 1360–

South African Journal Botany 3,

1366.

375–379.

Jayaraman, J., Norrie, J. and Punja,

Ferreira, M. I. and Lourens, A. F.

Z. K. (2011). Commercial extract

(2002). The efficacy of liquid sea-

from the brown seaweed Ascophyl-

weed extract on the yield of canola

lum nodosum reduces fungal diseas-

plants. South African Journal of

es in greenhouse cucumber. Journal

Plant and Soil 19, 159–161.

of Applied Phycology 23, 353–361.

Finnie, J. F. and Van Staden, J. (1985).

Jeannin, I., Lescure, J. C. and Morot-

Effect of seaweed concentrate and

Gaudry, J. F. (1991). The effect of

applied hormones on in vitro cul-

aqueous seaweed sprays on the

tured tomato roots. Journal of Ap-

growth of maize. Botanica Marina

plied Phycology 3, 215–222.

34, 141–145.

Gil-Chavez, G. J., Villa, J. A., Ayala-

Khan, W., Hiltz, D., Critchley, A. T.

Zavala, J. F., Heredia, J. B.,

and Prithiviraj, B. (2011). Bioas-

Sepulveda, D., Yahia, E. M. and

say to detect Ascophyllum nodosum

Gonzalez-Aguilar, G. A. (2013).

extract-induced cytokinin-like activ-

Technologies for extraction and

ity in Arabidopsis thaliana. Journal

production of bioactive compounds

of Applied Phycology 23, 409–414.

to be used as nutraceuticals and

Kilinc, S., Cirik, B., Turan, G.,

food ingredients: An overview.

Tekogul, H. and Koru, E. (2013).

Comprehensive Reviews in Food

Seaweeds for food and industrial

Science and Food Safety 12, 5–23.

applications, in: Innocenzo Muz-

Glombitza, K. W. and Koch, M.

zalupo (Ed.), Agricultural and bio-

(1989). Secondary metabolites of

logical sciences, food industry. In

pharmaceutical potential. In Cress-

Tech. ISBN: 978-953-51-0911-2

well RC, Rees TAV, Shah N (Eds),

Kumar, G. and Sahoo, D. (2011). Ef-

Algal and cyanobacterial biotech-

fect of seaweed liquid extract on

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 208

Biotech Sustainability (2017)

Potential of Marine Algae Derived Extracts Lakkakula and Manikandan growth and yield of Triticum aes-tions, operation strategies and appli-

tivum var. Pusa Gold. Journal of

cations. Journal of Chemical Tech-

Applied Phycology 23, 251–255.

nology and Biotechnology 89, 178–

Kumari, R., Kaur, I. and Bhatnagar,

195.

A. K. (2011). Effect of aqueous ex-

Papenfus, H. B., Kulkarni, M. G.,

tract of Sargassum johnstonii Setch-

Stirk, W. A., Finnie, J. F. and Van

ell & Gardner on growth, yield and

Staden, J. (2013). Effect of a com-

quality of Lycopersicon esculentum

mercial seaweed extract (Kelpak®)

Mill. Journal of Applied Phycology

and

polyamines

on

nutrient-

23, 623–633.

deprived (N, P and K) okra seed-

Masojidek, J., Papacek, S., Sergejevo-

lings. Scientia Horticulturae 151,

va, M., Jirka, V., Cerveny, J.,

142–146.

Kunc, J., Korecko, J., Verboviko-

Paulert, R., Talamini, V., Cassolato, J.,

va, O., Kopecky, J., Stys, D. and

Duarte, M., Noseda, M., Smania,

Torzillo, G. (2003). A closed solar

A. J. and Stadnik, M. (2009). Ef-

photobioreactor for cultivation of

fects of sulfated polysaccharide and

microalgae under supra-high irradi-

alcoholic extracts from green sea-

ance: basic design and performance.

weed Ulva fasciata on anthracnose

Journal of Applied Phycology 15,

severity and growth of common

239–248.

bean ( Phaseolus vulgaris L.). Jour-

Masojidek, J., Sergejevova, M., Rott-

nal of Plant Diseases and Protection

nerova, K., Jirka, V., Korecko, J.,

116, 263–270.

Kopecky, J., Zatkova, V., Torzillo,

Pulz, O. (2001). Photobioreactors: pro-

G. and Stys, D. (2009). A two-stage

duction systems for phototrophic

solar photobioreactor for cultivation

microorganisms. Applied Microbi-

of microalgae based on solar con-

ology and Biotechnology 57, 287–

centrators. Journal of Applied Phy-

293.

cology 21, 55–63.

Rathore, S. S., Chaudhary, D. R.,

Muller-Feuga, A., Lemar, M., Vermel,

Boricha, G. N. and Ghosh, A.

E., Pradelles, R., Rimbaud, L. and

(2009). Effect of seaweed extract on

Valiorgue, P. (2012). Appraisal of a

the growth, yield and nutrient up-

horizontal two-phase flow photobio-

take of soybean ( Glycine max) un-

reactor for industrial production of

der rainfed conditions. South Afri-

delicate microalgae species. Journal

can Journal of Botany 75, 351–355.

of Applied Phycology 24, 349–355.

Rency, A. S., Satish, L., Pandian, S.,

Nelson, W. R. and Van Staden, J.

Rathinapriya, P. and Ramesh, M.

(1984). The effect of seaweed con-

(2017). In vitro propagation and ge-

centrate on growth of nutrient-

netic fidelity analysis of alginate-

stressed

greenhouse

cucumbers.

encapsulated

Bacopa

monnieri

Hortscience 19, 81–82.

shoot tips using Gracilaria salicor-

Ngo, D. H., Wijesekaraa, I., Voa, T. S.,

nia extracts. Journal of Applied

Van Taa, Q. and Kima, S. K.

Phycology 29, 481–494.

(2011). Marine food-derived func-

Richmond, A. and Vonshak, A. (1978).

tional ingredients as potential anti-

Spirulina culture in Israel. Biologi-

oxidants in the food industry: an

cal constraints in algal biotechnolo-

overview. Food Research Interna-

gy 11, 274–279.

tional 44, 523–529.

Rorrer, G. L. and Cheney, D. P.

Olivieri, G., Salatino, P. and Mar-

(2004). Bioprocess engineering of

zocchella, A. (2014). Advances in

cell and tissue cultures for marine

photobioreactors for intensive mi-

seaweeds. Aquacultural Engineering

croalgal

productions:

configura-

32, 11–41.

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 209

Biotech Sustainability (2017)

Potential of Marine Algae Derived Extracts Lakkakula and Manikandan Sanderson, K. J. and Jameson, P. E.

R., McCormack, R. and Mellon,

(1986). The cytokinins in a liquid

R. (2012). Biostimulant activity of

seaweed extract: could they be ac-

brown

seaweed

species

from

tive ingredients?. Acta Horticulturae

Strangford Lough: compositional

179, 113–116.

analyses of polysaccharides and bi-

Satish,

L.,

Rameshkumar,

R.,

oassay of extracts using mung bean

Rathinapriya, P., Pandian, S.,

( Vigno mungo L.) and pakchoi

Rency, A. S., Sunitha, T. and

( Brassica rapachinensis L.). Journal

Ramesh, M. (2015). Effect of sea-

of Applied Phycology 24, 1081–

weed liquid extracts and plant

1091.

growth regulators on in vitro mass

Sivasankari, S., Venkatesalu, V., An-

propagation of brinjal ( Solanum

antharaj, M. and Chandrasekar-

melongena L.) through hypocotyl

an, M. (2006). Effect of seaweed

and leaf disc explants. Journal of

extracts on the growth and biochem-

Applied Phycology 27, 993–1002.

ical constituents of Vigna sinensis.

Satish, L., Rathinapriya, P., Rency, A.

BioresourceTechnology 97, 1745–

S., Ceasar, S. A., Pandian, S. and

1751.

Rameshkumar, R. (2016). Somatic

Spinelli, F., Fiori, G., Noferini, M.,

embryogenesis and regeneration us-

Sprocatti, M. and Costa, G.

ing Gracilaria edulis and Padina

(2009). Perspectives on the use of a

boergesenii seaweed liquid extracts

seaweed extract to moderate the

and genetic fidelity in finger millet

negative effects of alternate bearing

( Eleusine coracana). Journal of Ap-

in apple trees. The Journal of Horti-

plied Phycology 28, 2083–2098.

cultural Science and Biotechnology

Sato, Y., Yamaguchi, M., Hirano, T.,

84, 131–137.

Fukunishi, N., Kawano, T. and

Spinelli, F., Fiori, G., Noferini, M.,

Kawano, S. (2017). Effect of water

Sprocatti, M. and Costa, G.

velocity on Undaria pinnatifida and

(2010). A novel type of seaweed ex-

Saccharina japonica growth in a

tract as a natural alternative to the

novel tank system designed for

use of iron chelates in strawberry

macroalgae cultivation. Journal of

production. Scientia Horticulturae

Applied Phycology 29, 1429–1436.

125, 263–269.

Selvam, G. G. and Sivakumar, K.

Steveni, C. M., Norrington-Davies, J.

(2013). Effect of foliar spray from

and Hankins, S. D. (1992). Effect

seaweed liquid fertilizer of Ulva re-