Biotechnology for Sustainability by Subhash Bhore, K. Marimuthu and M. Ravichandran [E - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 177

Biotech Sustainability (2017)

A Review on Green Synthesis of Nanoparticles… Arumugam and Sharma tivity on Reduction of Methylene

Gowramma, B. Keerthi, U. Mokula, R.

Blue. Process Biochemistry. 47,

and Rao, D.M. (2015). Biogenic

1351-1357.

silver nanoparticles production and

Eric, C.N. Hui, H.Lisa, S.Homer,

characterization from native stain of

G.Hugo, M.G.John, B.C.George,

Corynebacterium species and its an-

E. H. andSteven, L. S. (2011).

timicrobial activity. Biotech. 5, 195–

Biosynthesis of Iron and Silver

201.

Nanoparticles at Room Temperature

Hoffman, J. Mills, G. Yee, H. and

Using Aqueous

sorghum Bran

Hoffmann, M. (1992). Q-Sized

Extracts. Langmuir. 27 (1). 264–

CdS: Synthesis, Characterization,

271.

and Efficiency of Photoinitiation of

Ganapathi, R.K, Ashok, C.H. and Ven-

Polymerization of Several Vinylic

kateswara R.K. Shilpa C.C.H. and

Monomers. Journal of Physical

Pavani, T. (2015). Green Synthesis

Chemistry. 96(13), 5546–5552.

of TiO2 Nanoparticles Using Aloe

Huang, X. Jian, P.K. El-Sayed, I.H. and

Vera Extract. International Journal

El-Sayed, M.A. (2006). Determina-

of Advanced Research in Physical

tion of the minimum temperature

Science. 2, 1A, 28-34.

required for selective photothermal

Garima, S. Ashish, R.S. Riju, B. Jong-

destruction of cancer cells with the

bong, P. Bilguun, G. Ju-Suk, N.

use of immune-targeted gold nano-

and Sang-Soo, L. (2014). Biomole-

particles. Photochem. Photobiol. 82,

cule-Mediated Synthesis of Seleni-

412–417.

um Nanoparticles using Dried Vitis

Huh, A. J. and Kwon, Y.J. (2011).

vinifera (Raisin) extract. Molecules.

Nanoantibiotic: a new paradigm for

19, 2761-2770.

treating infectious diseases using

Geetha, N. Geetha, T.S. Manonmani, P.

nanomaterials in the antibiotics re-

and Thiyagarajan, M. (2014).

sistant era. Journal of Controlled

Green Synthesis of silver nanoparti-

Release. 156(2), 128–145.

cles using Cymbopogan Citratus

Ipsa, S. and Nayak, P.L. (2013). Anti-

(Dc) Stapf. Extract and its antibacte-

microbial Activity of Copper Nano-

rial activity. Aust. J. Basic Appl. Sci.

particles Synthesised by Ginger

8, 324–331.

( Zingiber officinale) extract. World

Ghosh, S.K. and Pal, T. (2007). Inter-

Journal of Nano Science & Tech-

particle coupling effect on the sur-

nology. 2(1), 10-13.

face plasmon resonance of gold na-

Iravani, S. (2011). Green Synthesis of

noparticles: From theory to applica-

Metal Nanoparticles Using Plants.

tion. Chem. Rev. 107, 4797–4862.

Green Chemistry, 13, 2638-2650.

Gong, P. Li, H. He, X. Wang, K. Hu, J.

Jacob, J. Mukherjee, T. and Kapoor, S.

and Zhang, S. (2007). Preparation

(2012). A simple approach for facile

and antibacterial activity of Fe3O4,

synthesis of Ag, anisotropic Au and

Ag nanoparticles. Nanotechnology,

bimetallic (Ag/Au) nanoparticles us-

18(28), 604-611.

ing cruciferous vegetable extracts.

Gopinath, M. Subbaiya, R. Selvam,

Mater. Sci. Eng. C. 32, 1827–1834.

M.M. and Suresh, D. (2014). Syn-

Jae, Y.S. Eun-Yeong, K. and Beom,

thesis of copper nanoparticles from

S.K. (2010). Biological synthesis of

Nerium oleander leaf aqueous ex-

platinum nanoparticles using Diopy-

tract and its antibacterial activity.

ros kaki leaf extract. Bioprocess Bi-

International Journal of Current

osyst. Eng. 33, 159–164.

Microbiology and Applied Science.

Jayalakshmi, and Yogamoorthi, A.

3(9), 814–818.

(2014). Green synthesis of copper

oxide nanoparticles using aqueous

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 178

Biotech Sustainability (2017)

A Review on Green Synthesis of Nanoparticles… Arumugam and Sharma extract of flowers of Cassia alata

and their catalytic activity towards

and particles characterisation. Inter-

the Suzuki coupling reaction . Dal-

national Journal of Nanomaterials

ton Trans. 43, 9026.

and Biostructures. 4(4), 66-71.

Kirupagaran, R. Saritha, A. and Bhu-

Jia, L. Zhang, Q. Li, Q. and Song, H.

vaneswari, S. (2016). Green Syn-

(2009). The biosynthesis of palladi-

thesis of Selenium Nanoparticles

um nanoparticles by antioxidants

from Leaf and Stem Extract of Leu-

in Gardenia jasminoides Ellis: Long

cas lavandulifolia Sm. and their

lifetime

nanocatalysts

for

p-

Application. Journal of Nanoscience

nitrotoluene hydrogenation. Nano-

and Technology. 2(5), 224–226.

technology. 20,385601.

Kora, A.J. and Rastog,i L. (2015).

Joglekar, S. Kodam, K. Dhaygude, M.

Green synthesis of palladium nano-

and Hudlikar, M. (2011). Novel

particles using gum ghatti ( Anogeis-

route for rapid biosynthesis of lead

sus latifolia) and its application as

nanoparticles using aqueous extract

an antioxidant and catalyst. Arab. J.

of Jatropha curcas L. latex. Mater.

Chem. doi; 2015.06.024

Lett. 65, 3170–3172.

Korbekandi, H. Iravani S. and Abbasi,

Kanchana, L.C. Aparna, Y. Ramchan-

S. (2009). Production of nanoparti-

der, M. Ravinder, D. and Jaipal,

cles using organisms. Critical Re-

K. (2016). Synthesis and Character-

views in Biotechnology. 29, 279–

isation of In2O3 Nanoparticles from

306.

Astragalus gummifer. Advances in

Kulkarni, V.D. and Kulkarni, P.S.

Nanoparticles. 5, 114-122.

(2013). Green Synthesis of Copper

Karthik, R. Sasikumar, R. Shen-Ming,

Nanoparticles Using Ocimum Sanc-

C. Govindasamy, M. Vinoth Ku-

tum Leaf Extract. International

mar, J. and Muthuraj, V. (2016).

Journal of Chemical Studies. 1(3),

Green Synthesis of Platinum Nano-

1–4.

particles Using Quercus Glauca ex-

Kumar, P.R. Vivekanandhan, S. Misra,

tract and Its Electrochemical Oxida-

M. Mohanty, A. and Satyana-

tion of Hydrazine in Water Samples.

rayana, N. (2012). Soybean ( Gly-

Int. J. Electrochem. Sci. 11, 8245 –

cine max) leaf extract based green

8255.

synthesis of palladium nanoparti-

Khalil, K.A. Fouad, H. Elsarnagawy, T.

cles. J. Biomater. Nanobiotechnol.

and Almajhdi, F.N. (2013). Prepa-

3, 14–19.

ration and characterization of elec-

Latha, N. and Gowri. M. (2014). Bio

trospun PLGA/silvercomposite nan-

Synthesis and Characterisation of

ofibers for biomedical applications.

Fe3O4 Nanoparticles Using Carica-

Int J Electrochem Sci . 8, 3483–93.

ya Papaya Leaves Extract. Interna-

Khalil, M.M.H. Ismail, E.H. El-

tional Journal of Science and Re-

Baghdady, K.Z. and Mohamed, D.

search. 3, 11.

(2013). Green synthesis of silver

Lee, H.J. Song, J.Y. and Kim, B.S.

nanoparticles using olive leaf extract

(2013). Biological synthesis of cop-

and its antibacterial activity. Arabi-

per nanoparticles using Magnolia

an Journal of Chemistry. 7, 1131–

kobus leaf extract and their antibac-

1139.

terial activity. Journal of Chemical

Khan, M. Khan, M. Kuniyil, M. Adil,

Technology

and

Biotechnology.

S.F. Al-Warthan, A. Alkhathlan,

88(11), 1971–1977.

H.Z. Tremel, W. Tahir, M.N. and

Maensiri, S. Laokul, P. Klinkaewna-

Siddiqui, M.R.H. (2014). Biogenic

rong, J. Phokha, S. Promarak, V.

synthesis of palladium nanoparticles

and Seraphin, S. (2008). Indium

using Pulicaria glutinosa extract

oxide (In2O3) nanoparticles using

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 179

Biotech Sustainability (2017)

A Review on Green Synthesis of Nanoparticles… Arumugam and Sharma Aloe vera plant extract: Synthesis

and spices extract. International

and optical properties. J. Optoelec-

Journal of Plant, Animal and Envi-

tron. Adv. Mater. 10, 161–165.

ronmental Sciences. 3, 1.

Mahnaz, M. Farideh, N. Mansor, B.A.

Mondal, S. Roy, N. Laskar, R.A. Sk, I.

and Rosfarizan, M. (2013). Green

Basu, S. Mandal, D. and Begum,

Biosynthesis and Characterization

N.A. (2011). Biogenic synthesis of

of Magnetic Iron Oxide (Fe3O4)

Ag, Au and bimetallic Au/Ag alloy

Nanoparticles

Using

Seaweed

nanoparticles using aqueous extract

( Sargassum muticum) Aqueous Ex-

of mahogany ( Swietenia mahogani

tract. Molecules. 18(5), 5954-5964.

JACQ) leaves. Colloids Surf. B. 82,

Majumder, B.R. (2012). Bioremediation:

497–504.

Copper Nanoparticles from Elec-

Mujeeb, K. Merajuddin, K. Mufsir, K.

tronic-waste, International Journal

Syed, F.A. Abdulrahman, A.W.

of Engineering Science and Tech-

Hamad, Z. A. Wolfgang, T. Mu-

nology, 4.

hammad, N.T. and Mohammed,

R.H.S. (2014). Biogenic synthesis of Makarov, V.V. Love, A.J. Sinitsyna,

palladium nanoparticles using Pu-

O.V. Makarova, S.S. Yaminsky,

licaria glutinosa extract and their

I.V. Taliansky, M.E. and Kalini-

catalytic activity towards the Suzuki

na, N.O. (2014). Green nanotech-

coupling reaction. Dalton Transac-

nologies: Synthesis of metal nano-

tions. 24.

particles using plants. Acta Naturae.

Mukherjee, P. Ahmad, A. Mandal, D.

6, 35–44.

Senapati, S. Sainkar, S.R. Khan,

Makarov,  V.V. Makarova,  S.S. Love, 

M.I. Ramani, R. Parischa, R.

A.J.  Sinitsyna,  O.V. Dudnik, 

Ajayakumar, P.V. and Alam, M.

A.O. Yaminsky,  I.V. Taliansky, 

(2001). Bioreduction of AuCl4 ions

M.E.  Kalinina,  N.O. (2014). Bio-by the fungus, Verticillium sp. and

synthesis of Stable Iron Oxide Na-

surface trapping of the gold nano-

noparticles in Aqueous Extracts of

particles formed. Angew. Chem. Int.

Hordeum vulgare and Rumex ace-

Ed. 40, 3585–3588.

tosa plants. J. Langmuir. 30 (20),

Mukunthan, K.S. Elumalai, E.K. Patel,

5982-5988.

E.N. and Murty, V.R. (2011).

Manikandan, V. Velmurugan, P. Park,

Catharanthus roseus: A Natural

J.H. Lovanh, N. Seo, S.K. Jayan-

Source for Synthesis of Silver Na-

thi, P. Park, Y.J. Cho, M. and Oh,

noparticles. Asian Pacific Journal of

B.T. (2016). Synthesis and antimi-

Tropical Biomedicine. 1, 270-274.

crobial activity of palladium nano-

Musthafa, O.M. Sudip, C. Tasneem, A.

particles from Prunus x yedoensis

Shahid, A. and Abbasi, A. (2016).

leaf extract. Materials Letter. 185,

Clean-Green Synthesis of Platinum

335–338.

Nanoparticles Utilizing a Pernicious

Matheswaran, B. (2014). Synthesis of

Weed Lantana ( Lantana Camara).

Iron Oxide Nanoparticles by Using

American Journal of Engineering

Eucalyptus globulus Plant Extract.

and Applied Sciences. 9 (1), 84-90.

J. Surf. Sci. Nanotech. 12, 363-367.

Nadagouda, M.N. and Varma, R.S.

Mittal, A.K. Chisti, Y. and Banerjee,

(2008). Green synthesis of silver

U.C. (2013). Synthesis of metallic

and palladium nanoparticles at room

nanoparticles using plants. Biotech-

temperature using coffee and tea ex-

nol. Adv. 31, 346–356.

tract . Green Chem. 10, 859–862.

Monalisa, P. and Nayak P.L. (2013).

Narayanan, K.B. and Sakthivel, N.

Eco-friendly green synthesis of iron

(2008). Coriander leaf mediated bi-

nanoparticles from various plants

ISBN: 978-967-14475-3-6; eISBN: 978-967-14475-2-9 180

Biotech Sustainability (2017)

A Review on Green Synthesis of Nanoparticles… Arumugam and Sharma osynthesis of gold nanoparticles.

cles from Cassia auriculata leaf ex-

Mater. Lett. 62, 4588–4590.

tract and in-vitro evaluation of an-

Nellore, J. Pauline, P.C. and Am-

timicrobial activity. International

arnath, K. (2012). Biogenic synthe-

Journal of Applied Biology and

sis of Sphearanthus amaranthoids

Pharmaceutical Technology. 3(2),

towards the efficient production of

222-228.

the biocompatible gold nanoparti-

Patil, R.S. Kokate, M.R. and Kolekar,

cles. Dig. J. Nanomater. Biostruct.

S.S. (2012). Bioinspired Synthesis

7, 123–133.

of Highly Stabilized Silver Nano-

Niranjan, B. Saha, S. Chakraborty, M.

particles using Ocimum tenuiflorum