A Closer Look at Membrane Proteins by Dragana Robajac, Miloš Šunderić, Nikola Gligorijev - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

Fried H, Kutay U. Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci. 2003;60(8):1659–1688.

Fritzsche M, Charras G. Dissecting protein reaction dynamics in living cells by fluorescence recovery after photobleaching. Nat Protoc. 2015;10(5):660–680.

Furukawa K, Fritze CE, Gerace L. The major nuclear envelope targeting domain of LAP2 coincides with its lamin binding region but is distinct from its chromatin interaction domain. J Biol Chem. 1998;273(7):4213–4219.

Gerace L, Burke B. Functional organization of the nuclear envelope. Annu Rev

Cell Biol. 1988;4:335–374.

Gilchrist D, Rexach M. Molecular basis for the rapid dissociation of nuclear localization signals from karyopherin alpha in the nucleoplasm. J Biol Chem. 2003;278(51):51937–51949.

Goodchild RE, Dauer WT. The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J Cell Biol. 2005;168(6):855–862.

Goryaynov A, Ma J, Yang W. Single-molecule studies of nucleocytoplasmic transport: from one dimension to three dimensions. Integr Biol (Camb). 2012;4(1):10–21.

Greber UF, Senior A, Gerace L. A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO J. 1990;9(5):1495–1502.

Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, Revyakin A, Patel R, et al. A general method to improve fluorophores for live-cell and singlemolecule microscopy. Nat Methods. 2015;12(3):244–250.

Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. The nuclear lamina comes of age. Nat Rev Mol Cell Biol. 2005;6(1):21–31.

Hallberg E, Wozniak RW, Blobel G. An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region.

J Cell Biol. 1993;122(3):513–521.

Haraguchi T, Kojidani T, Koujin T, Shimi T, Osakada H, Mori C, Yamamoto A, Hiraoka Y. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J Cell Sci. 2008;121(Pt 15):2540–2554.

Haraguchi T, Koujin T, Segura-Totten M, Lee KK, Matsuoka Y, Yoneda Y, Wilson KL, Hiraoka Y. BAF is required for emerin assembly into the reforming nuclear envelope. J Cell Sci. 2001;114(Pt 24):4575–4585.

Helms V. Fluorescence Resonance Energy Transfer. In Principles of Computational Cell Biology. Weinheim: Wiley-VCH. 2008, p202.

Helms V. Principles of Computational Cell Biology: From Protein Complexes to Cellular Networks. John Wiley & Sons, 2018.

Hetzer MW, Wente SR. Border control at the nucleus: Biogenesis and organization of the nuclear membrane and pore complexes. Dev Cell. 2009;17(5):606–616.

Hinshaw JE, Carragher BO, Milligan RA. Architecture and design of the nuclear pore complex. Cell. 1992;69(7):1133–1141.

Hodzic DM, Yeater DB, Bengtsson L, Otto H, Stahl PD. Sun2 is a novel mammalian inner nuclear membrane protein. J Biol Chem.

2004;279(24):25805–25812.

Katta SS, Smoyer CJ, Jaspersen SL. Destination: inner nuclear membrane. Trends

Cell Biol. 2014;24(4):221–229.

Konopka CA, Bednarek SY. Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J. 2008;53(1):186–196.

Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, Bui KH, et al. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science. 2016;352(6283):363–365.

Kupferschmidt K. A Lethal Dose of RNA. Science. 2013;341(6147) :732–733.

Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–132.

Laba JK, Steen A, Veenhoff LM. Traffic to the inner membrane of the nuclear envelope. Curr Opin Cell Biol. 2014;28:36–45.

Leavesley SJ, Rich TC. Overcoming limitations of FRET measurements.

Cytometry A. 2016;89(4):325–327.

Lee KK, Haraguchi T, Lee RS, Koujin T, Hiraoka Y, Wilson KL. Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J Cell Sci. 2001;114(Pt 24):4567–4573.

Li Y, Junod SL, Ruba A, Kelich JM, Yang W. Nuclear export of mRNA molecules studied by SPEED microscopy. Methods. 2019;153:46–62.

Lim D, Chu KK, Mertz J. Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Opt Lett. 2008;33(16):1819–1821.

Lim RY, Fahrenkrog B, Köser J, Schwarz-Herion K, Deng J, Aebi U. Nanomechanical basis of selective gating by the nuclear pore complex.

Science. 2007;318(5850):640–643.

Lin F, Blake DL, Callebaut I, Skerjanc IS, Holmer L, McBurney MW, PaulinLevasseur M, Worman HJ. MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J Biol Chem. 2000;275(7):4840–4847.

Liu J, Lee KK, Segura-Totten M, Neufeld E, Wilson KL, Gruenbaum Y. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2003;100(8):4598–4603.

Liu D, Wu X, Summers MD, Lee A, Ryan KJ, Braunagel SC. Truncated isoforms of Kap60 facilitate trafficking of Heh2 to the nuclear envelope. Traffic. 2010;11(12):1506–1518.

Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol. 2008;3(6):373–382.

Lusk CP, Blobel G, King MC. Highway to the inner nuclear membrane: rules for the road. Nat Rev Mol Cell Biol. 2007;8(5):414–420.

Ma J, Liu Z, Michelotti N, Pitchiaya S, Veerapaneni R, Androsavich JR, Walter NG, Yang W. High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nat Commun. 2013;4:2414.

Ma J, Yang W. Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc Natl

Acad Sci U S A. 2010;107(16):7305–7310.

Maimon T, Elad N, Dahan I, Medalia O. The human nuclear pore complex as revealed by cryo-electron tomography. Structure. 2012;20(6):998–1006.

Malik P, Zuleger N, Schirmer EC. Transport of Inner Nuclear Membrane Proteins. In Nuclear Transport, Landes Bioscience, 2009, pp133–145.

Malone CJ, Fixsen WD, Horvitz HR, Han M. UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development. 1999;126(14):3171–3181.

Manilal S, Man NT, Sewry CA, Morris GE. The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum Mol Gen. 1996;5(6) :801–808.

Mans BJ, Anantharaman V, Aravind L, Koonin EV. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle. 2004;3(12):1612–1637.

Matsuura Y, Stewart M. Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J. 2005;24(21):3681– 3689.

Meinema AC, Laba JK, Hapsari RA, Otten R, Mulder FA, Kralt A, van den Bogaart G, et al. Long unfolded linkers facilitate membrane protein import through the nuclear pore complex. Science. 2011;333(6038):90–93.

Miernyk JA, Thelen JJ. Biochemical approaches for discovering protein-protein interactions. Plant J. 2008;53(4):597–609.

Mudumbi KC, Schirmer EC, Yang W. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution. Nat

Commun. 2016;7:12562.

Östlund C, Folker ES, Choi JC, Gomes ER, Gundersen GG, Worman HJ. Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins. J Cell Sci. 2009;122(Pt 22):4099– 4108.

Park E, Rapoport TA. Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys. 2012;41:21–40.

Paulin-Levasseur M, Blake DL, Julien M, Rouleau L. The MAN antigens are nonlamin constituents of the nuclear lamina in vertebrate cells. Chromosoma. 1996;104(5):367–379.

Powell L, Burke B. Internuclear exchange of an inner nuclear membrane protein (p55) in heterokaryons: In vivo evidence for the interaction of p55 with the nuclear lamina. J Cell Biol. 1990;111(6 Pt 1):2225–2234.

Rapoport TA, Goder V, Heinrich SU, Matlack KE. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 2004;14(10):568– 575.

Reichelt R, Holzenburg A, Buhle EL Jr, Jarnik M, Engel A, Aebi U. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J Cell Biol. 1990;110(4):883–894.

Rexach MF. A sorting importin on Sec61. Nat Struct Mol Biol. 2006;13(6):476– 478.

Rolls MM, Stein PA, Taylor SS, Ha E, McKeon F, Rapoport TA. A visual screen of a GFP-fusion library identifies a new type of nuclear envelope membrane protein. J Cell Biol. 1999;146(1):29–44.

Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis. 2000;21(6):1054–1070.

Saurabh S, Vidyarthi AS, Prasad D. RNA interference: concept to reality in crop improvement. Planta. 2014;239(3):543–564.

Schirmer EC, Gerace L. The nuclear membrane proteome: extending the envelope. Trends Biochem Sci. 2005;30(10):551–558.

Schnell SJ, Ma J, Yang W. Three-dimensional mapping of mRNA export through the nuclear pore complex. Genes (Basel). 2014;5(4):1032–1049.

Senior A, Gerace L. Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina. J Cell Biol. 1988;107(6 Pt 1):2029–2036.

Serebryannyy LA, Ball DA, Karpova TS, Misteli T. Single molecule analysis of lamin dynamics. Methods. 2019;157:56–65.

Shimi T, Koujin T, Segura-Totten M, Wilson KL, Haraguchi T, Hiraoka Y. Dynamic interaction between BAF and emerin revealed by FRAP, FLIP, and FRET analyses in living HeLa cells. J Struct Biol. 2004;147(1):31–41.

Soullam B, Worman HJ. The amino-terminal domain of the lamin B receptor is a nuclear envelope targeting signal. J Cell Biol. 1993;120(5):1093–1100.

Soullam B, Worman HJ. Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane. J Cell Biol. 1995;130(1):15–27.

Sprague BL, McNally JG. FRAP analysis of binding: proper and fitting. Trends

Cell Biol. 2005;15(2):84–91.

Sprague BL, Pego RL, Stavreva DA, McNally JG. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J. 2004;86(6):34733495.

Tapley EC, Ly N, Starr DA. Multiple mechanisms actively target the SUN protein UNC-84 to the inner nuclear membrane. Mol Biol Cell. 2011;22(10):1739– 1752.

Tokunaga M, Imamoto N, Sakata-Sogawa K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods. 2008;5(2):159– 161.

Turgay Y, Ungricht R, Rothballer A, Kiss A, Csucs G, Horvath P, Kutay U. A classical NLS and the SUN domain contribute to the targeting of SUN2 to the inner nuclear membrane. EMBO J. 2010;29(14):2262–2275.

Ungricht R, Kutay U. Establishment of NE asymmetry—targeting of membrane proteins to the inner nuclear membrane. Curr Opin Cell Biol. 2015;34:135– 141. von Appen A, Beck M. Structure determination of the nuclear pore complex with three-dimensional cryo electron microscopy. J Mol Biol. 2016;428(10 Pt A):2001–2010.

Wagner N, Krohne G. LEM-Domain proteins: New insights into lamin-interacting proteins. Int Rev Cytol. 2007;261:1–46.

Wang W, Shi Z, Jiao S, Chen C, Wang H, Liu G, Wang Q. Structural insights into SUN-KASH complexes across the nuclear envelope. Cell Res. 2012;22(10):1440–1452.

Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat

Biotechnol. 2001;19(3):242–247.

Weiss B, Davidkova G, Zhou LW. Antisense RNA gene therapy for studying and modulating biological processes. Cell Mol Life Sci. 1999;55(3):334–358.

Worman HJ, Evans CD, Blobel G. The lamin B receptor of the nuclear envelope inner membrane: a polytopic protein with eight potential transmembrane domains. J Cell Biol. 1990;111(4):1535–1542.

Worman HJ, Yuan J, Blobel G, Georgatos SD. A lamin B receptor in the nuclear envelope. Proc Natl Acad Sci U S A. 1988;85(22):8531-8534.

Wu W, Lin F, Worman HJ. Intracellular trafficking of MAN1, an integral protein of the nuclear envelope inner membrane. J Cell Sci. 2002;115(Pt 7):1361– 1371.

Yang W. Distinct, but not completely separate spatial transport routes in the nuclear pore complex. Nucleus. 2013;4(3):166–175.

Yang JW, Fu JX, Li J, Cheng XL, Li F, Dong JF, Liu ZL, Zhuang CX. A novel co-immunoprecipitation protocol based on protoplast transient gene expression for studying protein–protein interactions in rice. Plant Mol Biol Rep. 2014;32(1):153–161.

Ye Q, Worman HJ. Primary structure analysis and lamin B and DNA binding of human LBR, an integral protein of the nuclear envelope inner membrane. J

Biol Chem. 1994;269(15):11306–11311.

Ye Q, Worman HJ. Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem. 1996;271(25):14653–14656.

Zheng J. Spectroscopy-Based Quantitative Fluorescence Resonance Energy Transfer Analysis. In Ion Channels, Springer, 2006, pp65–77.

Zuleger N, Kelly DA, Richardson AC, Kerr AR, Goldberg MW, Goryachev AB, Schirmer EC. System analysis shows distinct mechanisms and common principles of nuclear envelope protein dynamics. J Cell Biol. 2011;193(1):109–123.

Zuleger N, Korfali N, Schirmer EC. Inner nuclear membrane protein transport is mediated by multiple mechanisms. Biochem Soc Trans. 2008;36(Pt 6):1373– 1377.

__________________________________________________________________

Submitted: 10th Sept 2019, Revised: 28th Nov 2019, Accepted: 3rd Jan 2020

 

Copyright: © 2020 by the authors. This is an Open Access publication distributed under the terms of the Creative Commons Attribution License (CC By 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are cited.